
Statistical modelling and data analysis
Syllabus of a short course of lectures (30 hrs)

1. Aims and general principles of modelling 2 hrs

2. Mathematical toolbox of statistical modelling 8 hrs

• Occurrence. Operations on occurrences. Elements of combinatorics 2 hrs

• Probability and its properties 1 hr

• Conditional probability. Total probability. Bayes’ formula 1 hr

• Discrete random variable 1 hr

• Continuous random variable 1 hr

• Random vectors 2 hrs

3. Some important distributions and their properties 8 hrs

• Geometric and binomial distributions. Poisson distribution 2 hrs

• Uniformly distributed random variable. Gaussian (normal) distribu-
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• χ2 distribution. Student, Cauchy, Breit-Wigner and Fisher distribu-
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• Generating a random variable with a pre-defined distribution 2 hrs

4. Elements of mathematical statistics 2 hrs

5. Monte Carlo method 3 hrs

• General features 1 hr

• Calculating a definite integral using Monte Carlo method 1 hrs

• Random number generators. Pseudo-random numbers 1 hrs

6. Classic example: modelling the propagation of neutrons through matter 2 hrs

7. Methods of analysing experimental data distributions 5 hrs

• Maximum likelihood method. Method of least squares 3 hrs

• Measurement uncertainties. Estimating uncertainties in indirect mea-
surements. Combining independent uncertainties. Interpretation of
measurement uncertainties 2 hrs
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1 Aims and general principles of modelling

The aim of this course is to learn how to use the language of mathematics to for-
mulate and solve various problems that emerge in realistic practical situations,
including those in physics. In general, this process can be called modelling. The
object of modelling is a system which consists of a number of functioning and
interacting objects. The state of the system is defined through a collection of
values taken by the variables necessary to describe the system at any particular
moment in time. Depending on the nature of the system, these variables can be
discrete or continuous. Examples of continuous systems can be found in physics,
while discrete systems can be found in banks. Describing a system mathemat-
ically would allow us to improve our understanding of its main properties and
help create correct predictions for various future developments.

In any modern experiment in physics, the formulation of its main physical
idea is followed by a modelling stage. The aim of this stage is to figure out
optimal conditions and parameters of the experiment, such as types and sizes of
the detectors, their placement, occupancy etc. In this sense, modelling is often
called a computational experiment.

Modelling starts with the formulation of the problem, which is then being
solved based on certain ideas. The formulation of the problem is usually a non-
trivial task, since the system rarely has well-defined edges, thus making it difficult
to separate its parts from external objects. In other words, no system is perfectly
isolated from the outside world, but we need to formulate our problem in a way
that would allow us to consider it as isolated. As an example, consider the task of
optimizing the air traffic in Europe after a volcanic eruption: if the eruption took
place somewhere in the Pacific, its effects can be ignored, while an eruption in
Iceland would have an important influence on the solution of the problem (which
was indeed the case in 2010).

As the problem is being formulated, the main parameters characterising the
system are determined. This implies some degree of idealisation, without which
no problem can be solved. For example, when solving the motion of a pendulum,
we use a mathematical model with a massless and unstretchable thread. At
this stage, no account is taken of the shape of the weight or its colour, and
air resistance is also ignored. So, at the idealisation stage it’s important to
separate the factors and parameters that drive the system from those that can
be neglected, since an idealised problem can be solved much more easily. While
observing a real pendulum, it’s noticed that the amplitude of its oscillations
decreases in time, and after some time – say, a couple of hours – the pendulum
stops. The mathematical model does not predict this behaviour. However, on
a shorter time-scale of, say, several seconds, the model “works” well. Hence,
once a model is chosen, the range of its applicability also needs to be specified.
Another example would be the ideal gas model applied to real gas. In these and
similar cases, a mathematical model can be designed based on the laws of physics
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governing these phenomena. But some other systems may appear to be too
complicated to be described by a mathematical model. Such examples include
activities of a group of human beings, or, say, various problems in economics.
Such complex systems are studied experimentally and the models are built based
on the statistical analysis of the obtained experimental data. The models of this
type are sometimes called statistical (simulational) models.

Once the model is built, one needs to check that the model provides an ade-

quate description of the real system. One would start by checking the dimensions
of the physical quantities entering the mathematical expression describing the
model. The model should be free of internal contradictions, and thus should
obey the laws of mathematical logic. Note however, that the decision whether
the model is adequate or not is itself, to some degree, subjective!

So the mathematical model is a simplified picture of reality, obtained by some
kind of idealisation of this reality. The purpose of the model could be some
kind of calculation, system design, control of various systems and processes etc.
Modelling can also reveal new, previously unknown properties of system, and
predict future developments. In cases where an experimental study is impossible
or impractical, modelling is the only way of studying a system. Analysis of various
situations for space exploration is a good example.

A mathematical model needs to be translated into a procedure (algorithm)
that will be performed on a computer. At this stage of the model development,
a platform needs to be selected. This could be a high-level language such as
FORTRAN, C or C++, or a software package within the Windows operating
system, such as MATHLAB or LABVIEW. After the model is created and solved
on a computer, it’s good practice to have some means of visualisation of the results
of simulation. This will help understand the numerical or analytical output.

Once a model is developed, the expected precision of the model is usually im-
plicitly defined. For example, if the model was built based on some experimental
input which was known to the precision at the level of 5%, trying to obtain results
with 1% precision will be a waste of time and effort. If one can identify some
components in the calculation process which happen to be negligible compared
to other terms, one can sometimes achieve major savings in the computing time
if these components are neglected at an early stage.

At an early stage of modelling it is often necessary to decide on the types
of variables used in the model. Usually two main categories are considered:
deterministic variables whose values can be reliably measured and/or calculated
theoretically, and stochastic variables whose values can be random. If a model
contains stochastic variables, this fact needs to be reflected in the description of
the model, and hence the model in this case needs to be based on the laws of
probability theory and mathematical statistics.

A model describing a physical system almost always contains random vari-
ables, and in order to be able to manipulate those quantities it is necessary to be
familiar with respective mathematical apparatus. For this reason, the introduc-
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tory part of this course contains the description of random variables and their
characteristics.

An important part of the modelling process is the interpretation of its results,
which incorporates the translation of mathematical results back to the language
describing the real world. Without this it would be impossible to make any
conclusions on the validity of the model.

The creation process of the model can be compared to the evolution of a child
learning to speak. Simply put, the language is a reflection of the real world, and
the improvement in the child’s speaking ability happens simultaneously with the
improvement in his/her cognition of the world. Similarly, a model starts with a
description of the simplest situation and becomes more and more sophisticated
as our understanding of the system improves.

The philosophy of modelling is very well explained by a Chinese proverb: “I
hear and I forget, I see and I remember, I do and I understand”.

The diagram in Figure 1 shows various ways of studying a system.
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2 Basics of probability theory

2.1 Occurrences. Operations on occurrences.

No natural phenomenon is free of a random influence of some sort. For this
reason, no matter how precisely one defines the conditions of an experiment, it
will never yield the same result twice. So every process is subject to some random
variations, but the role and degree of randomness will be different for different
phenomena. In some cases, those random variations may be negligibly small, but
there are processes where randomness plays a major role. A good example of the
latter is the Brownian motion, where the movement of particles is totally chaotic,
which is in turn determined by the chaotic motion of the molecules of the liquid.
In such cases, the randomness itself becomes a regularity.

It has been found that if one observes a random event many times, one can
determine certain specific regular features that characterise this randomness. The
probability theory is a field of mathematics that studies such random variables.
Starting from definitions and axioms, probability theory is built using deduction –
darting from general statements and applying mathematical logic and derivation
rules.

An uncertainty of a measurement is a simple example of a random variable.
There is no such thing as an exact measurement; this becomes more and more
obvious when the precision of the instrument is improved. The results of individ-
ual measurements are different numbers, which are usually close to each other. If
these results are plotted in a graph, they are not aligned along a smooth curve,
but are instead scattered within a certain range. The scatter is caused by the
measurement errors, but also by various random factors affecting the process.
Another example of a random variable is the scatter of artillery shells around a
target. Despite being aimed at the same spot, the shells never hit the same point
twice. This is caused by the dynamic nature of the atmosphere, i.e. the fact
that the parameters describing the atmosphere vary in time. The atmosphere
affects the flight of the shell, and the variation of the atmospheric parameters at
every point of the shell’s trajectory, which cannot be taken into account precisely,
causes the random scatter in the final position of the shell.

In probability theory, the term occurrence is used to describe a result of an
experiment or an observation. The occurrence describes the fact of an event
taking place, so it is neither a number nor a quantity. Occurrences are denoted
by capital Latin letters (with or without subscripts). For example, if a dice is
rolled, some possible occurrences are:

A{get a six} = {6}, B{get a three} = {3}, C{get an even number} = {2, 4, 6}.

The occurrence D{get a six and a three} is impossible, because {a six is thrown
up} and {a three is thrown up} are mutually exclusive – incompatible – occur-
rences. If, however, two dice are rolled, the above occurrence becomes perfectly

6



possible. Also possible is the occurrence F{sum of two dice is 4} = {2, 2; 1, 3; 3, 1}
which can happen in three possibilities. Among the occurrences listed above, C
and F are composite and can be split into simpler occurrences. A result of an
experiment, which cannot be decomposed further, is represented by an elemen-

tary occurrence. All possible results of an experiment comprise the space of the
occurrences, which is usually denoted by E, while individual elementary occur-
rences are said to be the points in this space. When a single dice is rolled, the
space contains six points:

A1{get a one}, A2{get a two}, A3{get a three},
A4{get a four}, A5{get a five}, A6{get a six},

and hence the space E is E = {1, 2, 3, 4, 5, 6}.
One can speak about an occurrence A only if it is known, for every experiment,

whether A took place or not. The set of points, which includes all possible results
of experiments where the occurrence A took place, fully defines this occurrence.
And vice-versa, if the point belongs to the set A, one would say that occurrence A
took place. In this sense, occurrence is defined as a term that stands for a set of

elementary occurrences. So the terms “elementary occurrence” and “occurrence”
are equivalent to the concepts of a point and a set of points, respectively. These
terms belong to the primary, and hence undefined, concepts of the probability
theory.

If an elementary occurrence B causes another occurrence A, then the former
is said to be facilitating the latter. If an experiment results in one of the occur-
rences facilitating A, then occurrence A has taken place. In an earlier example,
occurrence C{get an even number} happens, when the dice throw up a {2}, or a
{4} or a {6}.

An occurrence that contains all possible elementary occurrences for a given
experiment is said to be necessary for this experiment, and is denoted by the sym-
bol Ω. An occurrence which does not contain any of the elementary occurrences
for the current experiment is called impossible, and is denoted by the symbol ∅.
or the case of a single dice, a number between 1 and 6 is a necessary occurrence,
but a number outside this range, say larger than 6, is impossible. In other words,
a necessary occurrence will certainly happen if the experiment is performed, while
an impossible occurrence will not take place in any number of such experiments.
An occurrence which is neither necessary, nor impossible – i.e. an occurrence
which may or may not happen – is called a possible, or a random occurrence.

Two occurrences are said to be equiprobable, if, based on the symmetry of
the problem, there is no reason to believe that one is more likely to happen than
the other. When a dice is thrown, any number between 1 and 6 is equiprobable.
When a coin is tossed, the chances of getting heads and tails are equal. Two
occurrences are said to be compatible, if one of them does not exclude the other.
If one occurrence excludes the other, than the two are incompatible. Again, in the
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example of a single dice, occurrences A{get a six} and C{get an even number}
are compatible, but the occurrences B{get a three} and C{get an even number}
are not (since 3 is not an even number).

Consider an experiment, which must result in one of the following set of
occurrences A1, A2, . . . , An, (n ≤ ∞), where these occurrences are mutually in-
compatible. Such a set is said to form a complete set of occurrences. So, by
definition, the sum of the complete set of occurrences is a necessary occurrence:

A1 + A2 + · · ·+ An = Ω

In the example of rolling dice, the complete set is given by E{1, 2, 3, 4, 5, 6}.
The following theorem is true: using the full set of occurrences, any occur-

rence can be presented as (decomposed into) a sum of mutually incompatible
occurrences.

Proof: Let Ai form the complete set of occurrences, and A is an occurrence
which happens together with a certain Ak. Then

A = A · Ω = A ·
n

∑

i=1

Ai = A · Ak +
n

∑

i=1,i 6=k

Ai = A+ ∅ = A Q.E.D.

If every elementary occurrence that facilitates occurrence A causes occurrence
B, then A is said to cause B. In this case, A is said to be a included in B, which is
written as A ⊂ B (see Figure 1). This operation is called inclusion. It is obvious
that A is a subset of B. Consider, for example, two sets: A{all mothers} and
B{all women}. All mothers are women, but not all women are mothers; here B
includes A, in other words, A is a subset of B.

Every occurrence includes itself, A ⊂ A; it also includes the impossible occur-
rence, ∅ ⊂ A.

If A ⊂ B and B ⊂ A, then A and B are equivalent occurrences, and one can
write: A = B.

Consider again the example of dice. Let A ={get a three} and B ={get an
odd number}, then A ⊂ B, since 3 is an odd number. For a single dice, it is also
clear that E and Ω are equivalent occurrences.

The inclusion operation is transitive: if A ⊂ B and B ⊂ C, then A ⊂ C.
The sum (union) of two occurrences is an occurrence which takes place if and

only if the first, the second or both occurrences take place. In other words, the
occurrence A + B = A ∪ B contains all facilitating occurrences for both A and
B. In the above examples, if C ={get an even number}, then A+B = {1, 3, 5},
while A+ C = {2, 3, 4, 6}.

The product (intersection) of two occurrences is an occurrence which takes
place only if both occurrences take place: A ·B = A∩B. In the above examples,
A ·B = {3}, C · A = ∅.

The difference of occurrences A and B is an occurrence that happens when
A takes place and B does not. Clearly, for incompatible occurrences one has
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A − B = A, and also B − A = B, since B does not take place if A takes place,
and vice versa.

The occurrence A is a complement to occurrence A if it only happens when
A does not. The following rules are valid for complementary occurrences:

• Occurrences A and A are incompatible, i.e. cannot happen simultaneously.

• Either A or A must take place.

From these it is clear that A+A is a necessary occurrence, and that A and A are
each-others’ complements. So A+A = Ω and A ·A = ∅. Also, A+ ∅ = A,A · ∅ =

∅, A+ Ω = Ω, A · Ω = A, and A = A.
In the above examples, A = {3}, A = {1, 2, 4, 5, 6}, while C = {2, 4, 6}, C =

{1, 3, 5}.
Complementary occurrences are uniquely defined, i.e. if A = B then A = B.

It is also easy to show that

A ·B = A+ B, A+ B = A ·B, (1)

In general, a sum of two occurrences can be decomposed into incompatible oc-
currences in the following way:

A+ B = A ·B + A ·B + A ·B (2)

Exercise: prove identities (1) and (2).
Venn’s diagrams, shown in Figure 1, give simple geometric interpretation of

the relations between an occurrence and its complement, and various operations
on occurrences: the sum, the product, and the inclusion.

Figure 1:

Here are some other properties of occurrences:

• For any A, A+ A = A and also A · A = A.
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• The sum and the product of two occurrences is commutative:

A ∪ B = B ∪ A, A ∩ B = B ∩ A

• Sum and product are associative operations:

(A ∪ B) ∪ C = A ∪ (B ∪ C) = (A ∪ C) ∪ B = A ∪ B ∪ C

(A ∩ B) ∩ C = A ∩ (B ∩ C) = (A ∩ C) ∩ B = A ∩ B ∩ C

• Also, the following expression is true:

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

2.2 Elements of combinatorics

A set of n elements can be grouped into subsets of arbitrary k elements from the
set in a variety of ways, called groupings. The number of distinct subsets of the
set A that have exactly k elements is

Ck
n =

n!

k!(n− k)!

The order of elements in subset k is irrelevant. The numbers Ck
n are called

binomial coefficients; they have the following properties:

0! = 0, Ck
n = Cn−k

n , Ck
n = Ck−1

n−1 + Ck
n−1(Pascal

′s triangle),
n

∑

k=0

Ck
n = 2n.

The last identity means, that the number of all subsets in a set of n elements is
2n.

The sets which consist of the elements from set A, but in different order, are
called permutations of the set A. If A consists of n identical elements, there are
n! possible permutations.

Consider various possible groupings of k-element subsets from an n-element
set, where the elements can be distinguished from each other, e.g. are numbered.
There will be k! permutations in each k-element subset. Hence the total number
of such subsets is

Ak
n = k!Ck

n =
n!

(n− k)!

Each of these is called a partial permutation of k non-identical elements out of n.
Individual orderings differ from each other by the order of elements.

Consider a set A which consists of n different elements, and we want to con-
struct k-element subsets which differ by the type of elements and their order.
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Such subsets are called permutations with repetitions. Number of such permuta-
tions is Ak

n = nk.
Example: we have three digits: 1,2 and 3. How many different numbers can

be composed out of these? Here n = 3 and k = 1, 2, 3; also, clearly, the order
matters. Hence we have 31 + 32 + 33 = 3 + 9 + 27 = 39 different numbers. The
number of ‘1 out of 3’ groupings is

C1
3 =

3!

1!(3− 1)!
=

3!

1!2!
= 3

These are 1,2 and 3. The number of 2-digit groupings is

C2
3 =

3!

2!(3− 2)!
=

3!

2!1!
= 3

with the number of possible permutations being 2! = 2, so there are 3×2 = 6 such
numbers: 12, 13, 23, 21, 31, 32. In addition, there are three numbers containing
2 identical digits: 11, 22, 33. Hence, overall we have 6 + 3 = 9 2-digit numbers.
Following similar consideration, one ends up with 27 3-digit numbers: 123, 213,
312, 132, 232, 321, 122, 133, 112, 121, 131, 111, 211, 233, 221, 212, 223, 232, 222,
311, 322, 331, 313, 332, 323, 333.

2.3 Probability and its properties

A quantitative measure of an occurrence to take place is called its probability and
is denoted by the letter P . An occurrence which has probability is measurable (in
general, not all occurrences are measurable). Consider the space of all measurable
occurrences £, which has the following properties:

a) if A ∈ £ then A ∈ £.

b) if A ∈ £ and B ∈ £ then A ∩B ∈ £.

The space £ that satisfies these two conditions forms the algebra of the occur-
rences. From properties a) and b) it follows that

c) A ∪ B ∈ £ (here we used the identities A+ B = A ·B and A = A).

d) Ω ∈ £ and also ∅ ∈ £.

In addition let’s assume that if a certain occurrence Ak belongs to £, i.e. Ak ∈ £,
then any countable union of such occurrences also belongs to £, ∪∞

k=1Ak ∈ £. The
space of occurrences which has this property is called σ-algebra, and also Borelev’s
space. This property is necessary for proving certain complicated problems in
probability theory.

Consider an occurrence space £ which forms a σ-algebra. Now we can for-
mulate the axioms of the probability theory, as formulated by the Russian math-
ematician Kolmogorov:
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1. The probability of a random occurrence Ak ∈ £ is a non-negative number,
P (Ak) ≥ 0.

2. The probability of a necessary occurrence is equal to 1, P (Ω) = 1.

3. The probability of the sum of mutually exclusive occurrences is equal to
the sum of probabilities of these occurrences:

P (A1 + A2 + · · ·+ An) = P (A1) + P (A2) + · · ·+ P (An)

The last axiom also holds for n = ∞. It follows from these axioms that the sum
and the product of measurable occurrences are also measurable.

Probabilities have the following properties:

1. The probability of an impossible occurrence is equal to zero. Indeed:

Ω + ∅ = Ω ⇒ P (Ω) + P (∅) = P (Ω) ⇒ P (Ω) = 0.

2. The probability P (A) of any occurrence A lies within the range 0 ≤ P (A) ≤
1.

3. If A ⊂ B then P (A) ≤ P (B).

4. The probability of the complete set of occurrences is equal to 1,
∑n

i=1 P (Ai) =
1. Indeed:

A+ A = Ω ⇒ P (A) + P (A) = P (Ω) ≡ 1 ⇒ P (A) = 1− P (A).

5. For any two occurrences A and B, P (A + B) = P (A) + P (B) − P (A · B)
(see Figure 1 for the geometric interpretation of the sum of occurrences).
This formula can be used for calculating the probability of the sum of any
two occurrences.

6. Since P (A ·B) ≥ 0, from property 5 one has:

P (A+B) ≤ P (A) + P (B).

7. If A and B are equivalent occurrences, their probabilities are equal: A =
B ⇒ P (A) = P (B). Indeed, A = B means that A ⊂ B and also B ⊂ A.
Then, from property 3, A ⊂ B ⇒ P (A) ≤ P (B) and also B ⊂ A ⇒
P (B) ≤ P (A). From these two inequalities one has P (A) = P (B).

Let’s now address the following practical question: how can we calculate an
event occurrence probability?

Start with a simple case, when a set of n occurrences makes up a complete
set, and each of these occurrences is equally expected to take place. If we want
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to calculate the probability of a subset of m occurrences from the original set,
then we need to sum the individual probability m times. The probability of a
single occurrence is equal to 1/n, so we have

P =
m
∑

i=1

1

n
=

m

n
. (3)

In this definition, m is the number of occurrences facilitating our desired outcome,
while n is the number of of all possible outcomes.

Returning to the example of dice, let’s calculate the probability of getting an
even number. The complete set is given by 6 elementary occurrences {1, 2, 3, 4, 5, 6},
out of which 3 are occurrences facilitating the desired outcome, {2, 4, 6}. Hence,
the probability of getting an even number is P = 3/6 = 0.5.

When calculating the probability given by eq. (3), m and n do not have to be
finite or even defined, as long as the ratio m/n can be calculated. For example,
one has a large number of identical steel balls with the total weight of 50 kg, out
of which 20 kg are red and 30 kg are blue. A single ball is picked at random.
What’s the probability of picking a blue ball? The total number of balls is
not defined, but eq. (3) can still be used, because we know that the number of
facilitating occurrences is proportional to 3, while the complete set of occurrences
is proportional to 5. So the probability in question will be P = 3/5 = 0.6.

2.4 Conditional probability. Total probability and Bayes’
formula

Let’s figure out how to calculate the probability of a complicated occurrence. One
frequently encountered problem is when the probability of occurrence A needs to
be calculated under the condition that occurrence B, which has some probability,
has taken place. This is called a conditional probability and is denoted by PB(A)
or P (A|B). It’s intuitively clear that this probability is somehow related to the
overlap of occurrences A and B. Consider an example of a group of N people,
out of which NB are men and NA are smokers. A randomly selected person from
this group happens to be a man. One needs to calculate the probability that
this man is a smoker. Let A denote the occurrence that the selected person is
a smoker, and B stands for the occurrence that the selected person is a man.
Let NC be the number of smoker men, i.e. both A and B occurrences are taking
place. The Venn’s diagram corresponding to this case is given in Figure 2. From
the definition of probability one has

P (A) =
NA

N
, P (B) =

NB

N
, P (A ·B) =

NC

N
. (4)

Let’s now calculate PB(A). We already know that the selected person is a
man, so the overall number of cases is NB, while facilitating cases are those where
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Figure 2: Venn’s diagram illustrating the concept of conditional probability.

both A and B are taking place, the number of which is NC . Hence we have:

PB(A) =
NC

NB

=
NC/N

NB/N
=

P (A ·B)

P (B)
(5)

This formula can be used for calculating conditional probabilities. It can also be
used for calculating the probability of a product of occurrences:

P (A ·B) = P (B) · PB(A) (6)

In analogy with eq. (6) one can write P (B · A) = P (A) · PA(B), hence P (A) ·
PA(B) = P (B) · PB(A).

Two occurrences are said to be mutually independent if one does not affect
the other. For such occurrences it is clear that PB(A) = P (A), and hence eq. (6)
takes the form

P (A ·B) = P (A) · P (B). (7)

Eq. (7) is the necessary and sufficient condition of mutual independence of the
two occurrences. This condition can be generalised for the case of 3 mutually
independent occurrences:

P (A ·B · C) = P (A) · P (B) · P (C). (8)

Consider now two mutually independent occurrences A and B. Then one has

P (AB) = P (B)− P (AB) = P (B)− P (A)P (B) = P (B)[1− P (A)] = P (B)P (A)

B = AB + AB ⇒ P (B) = P (AB) + P (AB)
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which means that in this case A’s complement and B are independent as well.
Consider a collection of occurrences H1, H2, . . . , Hn, which are mutually ex-

clusive and form a complete set, and another occurrence A that can only happen
together with one of the occurrences Hi. The individual probabilities P (Hi) are
known, as well as conditional probabilities PHi

(A). Our aim here is to calculate
P (A), the probability of occurrence A.

Occurrence A can be presented as the sum of occurrences Hi; since these form
a complete set, their sum will be the necessary occurrence. Since A only happens
with one of Hi, one can write:

A = A · Ω = A ·
n

∑

i=1

Hi =
n

∑

i=1

A ·Hi ⇒ P (A) =
n

∑

i=1

P (A ·Hi),

and using eq. (6) one finally gets:

P (A) =
n

∑

i=1

P (Hi) · PHi
(A). (9)

Eq. (9) is known as the full probability formula.
Now let’s imagine that, within the above problem, we know that occurrence

A has taken place. How will the conditional probabilities P (Hi) change? In
other words, we would like to find the conditional probabilities for each of Hi

with respect to the occurrence A, PA(Hi). Using eq. (6) one has P (A · Hi) =
P (A) · PA(Hi) = PHi

(A), hence

PA(Hi) =
P (Hi) · PHi

(A)

P (A)
=

P (Hi) · PHi
(A)

∑n
j=1 P (Hi) · PHj

(A)
, i = 1, 2, . . . , n. (10)

Eq. (10) is known as Bayes’ formula. The probabilities P (Hi) of the occurrences
Hi are called a priori probabilities or hypotheses.

Complementary hypotheses always form a complete system of occurrences, so
one can always write

P (A) = P (H) · PH(A) + P (H) · PH(A). (11)

Eq. (11), which is often used in practice, is a special case of eq. (10).
Let’s consider an example, which will help us understand the essence of

eq. (10). A doctor is trying to diagnose a patient, based on the patient’s blood
test result. Initially, based on the symptoms, the doctor comes up with a set of
hypotheses, which we will denote Hi. Let the blood test result be A. The prob-
abilities PHi

(A) are known from the statistical analysis, i.e. from experimental
data it is known what the blood test looks like for hypothesis Hi. The doctor
applies eq. (10) and comes up with a set of probabilities PA(Hi). If one of these
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is close to 1, then the matching hypothesis Hi looks likely and the patient can be
treated accordingly.

The following is obviously true:

n
∑

i=1

PA(Hi) ==

∑n
i=1 P (Hi) · PHi

(A)
∑n

j=1 P (Hi) · PHj
(A)

= 1. (12)

This formula can be used to check whether the calculations of various conditional
probabilities are correct.

3 Random variables

3.1 Discrete random variables

Let’s introduce the concept of a random variable. A random variable is defined
when the range of its possible values is determined, and the probability of each
value is known. A random variable ξ is discrete if it can take a value from a dis-
crete set x1, x2, . . . , xn and the probability of each value is given. The probability
that ξ takes a value xi is pi:

P{ξ = xi} = pi (13)

There are no restrictions on values x1, x2, . . . , xn, but the probabilities pi must
satisfy the properties

pi > 0 (14)

p1 + p2 + · · ·+ pn = 1. (15)

Eq. (15) means that the random variable ξ must take some value out of the set
x1, x2, . . . , xn, i.e., this set is complete.

Let’s put the values xi in an increasing order, and list respective probabili-
ties pi underneath. The resulting table is called the distribution of the random
variable:

X =

{

x1 x2 x3 . . . xn

p1 p2 p3 . . . pn
(16)

There is another way of defining the random variable ξ. Instead of considering
the occurrence {ξ = xi}, one can consider occurrence {ξ ≤ xi}, i.e. the occurrence
that the variable ξ takes a value equal or less than xi. The probability of the
occurrence {ξ ≤ xi} is a function of the variable x, and is called the distribution

function F (x) of the random variable x. It is clear from the definition, that

F (x) = P{ξ ≤ xi} =







0, x < x1
∑i

k=1 pk, xi ≤ x < xi+1, i = 1, 2, . . . , n− 1
1, x ≥ xn

(17)
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Sometimes F (x) is called the cumulative distribution function. It’s graph has
a stepwise form, where the i-th step at x = xi has the height of pi (see Figure 3).

Figure 3: A graph representing the distribution function of a discrete random
variable.

It’s easy to calculate the probability P{α ≤ ξ < β} that the random variable
ξ falls into the semi-interval [α, β):

P{α ≤ ξ < β} = F (β)− F (α), (18)

where, clearly, F (β) ≥ F (α) for β > α. Using eq: (18) it’s easy to show that
F (−∞) = 0 and F (+∞) = 1.

In many cases, a random variable can be characterised by specific numerical
values that define certain basic properties of its distribution. Two such parame-
ters are mathematical expectation value and dispersion.

The mathematical expectation value Mξ of a random variable ξ is defined as

Mξ ≡ ξ =
n

∑

i=1

xipi ·
(

n
∑

i=1

pi

)−1

. (19)

From this definition it is clear that Mξ is the mean value of ξ, which we will
denote by ξ. Note that the more probable the values of ξ, the larger is its weight
in Eq. (19).

The expectation value has the following properties:

a) The expectation value of a constant is equal to that constant:

Mc = c (20)
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b) For any constant c and a random variable ξ the following is true:

M(ξ + c) = (Mξ) + c, M(cξ) = c(Mξ). (21)

c) For any two random variables ξ and µ one has:

M(ξ + µ) = Mξ +Mµ. (22)

The dispersion Dξ of a random variable ξ is defined as

Dξ = M(ξ −Mξ)2 = M(ξ − ξ)2 (23)

It follows from this definition that

Dξ = Mξ2 − 2 ·Mξ ·Mξ + (Mξ)2 = Mξ2 − (Mξ)2 = ξ2 −
(

ξ
)2

. (24)

The dispersion is a measure of scatter of the random variable around its mean
value. It has the following properties:

D(ξ + c) = Dξ, D(cξ) = c2(Dξ). (25)

For two independent random variables ξ and µ the following two properties
are true:

M(ξµ) = Mξ ·Mµ, D(ξ + µ) = D(ξ) +D(µ). (26)

A square root of the dispersion is called a root mean square deviation, or, in
short, r.m.s.:

σξ =
√

Dξ. (27)

Here are some more definitions:
If a random variable can take 2n + 1 possible values, which are ordered in

their magnitude, then the number with index n+1 is called the median m of the
distribution:

m = xn+1 (28)

If the sequence contains an even number of values 2n, then the median is calcu-
lated as

m = 0.5 · (xn + xn+1). (29)

The value of a random variable, which corresponds to the highest probability, is
called the mode: xm = max(pi).
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3.2 Continuous random variable

A random variable that can take any value from an interval (a, b) is called a
continuous random variable. An good example of a continuous random variable
is the polar angle of an α-particle radiated in a decay of a radioactive isotope. It
can take any value in the interval (0, π).

A continuous random variable ξ is defined by the interval (a, b), which includes
all possible values of the variable, and the distribution function F (x), which is
continuous and differentiable for all values of x from that interval. Using this
property of F (x) and a generalisation of eq. (18), one can calculate the probability
of the random variable falling within the interval (x, x+∆x):

P{x ≤ ξ < x+∆x} = F (x+∆x)− F (x)

Divide the r.h.s. by ∆x and take the limit ∆x → 0:

lim
∆x→0

P{x ≤ ξ < x+∆x}
∆x

= lim
∆x→0

F (x+∆x)− F (x)

∆x
= F ′(x) ≡ ρ(x). (30)

The quantity ρ(x) is called the probability density function or simply the prob-
ability density of the random variable ξ. It is clear from the definition that
P (ξ = x} = 0 (for this reason, P{x ≤ ξ ≤ x + ∆x} = P{x < ξ < x + ∆x}).
Hence, the probability of ξ being equal to some value x is meaningless; it’s the
probability that ξ takes a value from an interval – even infinitesimally small –
which contains x which has a direct physical meaning. Clearly, the probability is
proportional to the length of this interval:

P{x ≤ ξ < x+∆x} ≈ ρ(x)∆x = ∆F (x), (31)

where ρ(x) plays the role of the proportionality coefficient. Based on this formula,
the probability density ρ(x) can be given the following physical meaning: let
(a′, b′) be an interval within the interval (a, b), i.e. ≤ a′ < b′ ≤ b. The probability
that the variable ξ falls within (a′, b′) is then given by the integral

P{a′ < ξ < b′} =

∫ b′

a′
ρ(x)dx (32)

Based on this formula, one can give the following interpretation to the probability
density: the probability is the area of the curvilinear trapeze under the density
graph, between the limits of the interval.

In general, a random variable ξ can take its values from any interval, including
the infinite range (−∞,∞). In the latter case, similarly to the discrete variable,
one has F (−∞) = 0 and F (+∞) = 1. As for the density, in analogy with
eqs. (14,15) from the discrete case, it has the following properties:

ρ(x) > 0, (33)
∫ b

a

ρ(x)dx = 1 (34)
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Again in analogy with eq. (18), the distribution function F (x) can be presented
as the integral of the probability density:

F (x) = P{ξ < x} = P{−∞ < ξ < x} =

∫ x

−∞
ρ(t)dt. (35)

Differentiating eq. (35) one has F ′(x) = ρ(x), which confirms the interpretation
that the probability density function is the derivative of the distribution function,
and hence characterises the speed of its variation with x. It is clear that the
distribution function is non-decreasing; it is defined through an integral with a
variable upper limit, and hence it is continuous and differentiable on the whole
interval of its definition.

The expectation value M and the dispersion D of the continuous random
variable ξ are defined by

Mξ =

∫ b

a

xρ(x)dx, (36)

Dξ =

∫ b

a

(x−Mξ)2ρ(x)dx. (37)

As with the discrete random variable, the expectation value is equal to the mean
of ξ:

Mξ =

∫ b

a

xρ(x)dx =

∫ b

a
xρ(x)dx

∫ b

a
ρ(x)dx

, (38)

since
∫ b

a
ρ(x)dx = 1.

It can be shown that if the integral
∫∞
−∞ |x|ρ(x)dx converges, then the expec-

tation value Mξ is finite. In fact, the convergence of the above integral is the
necessary and sufficient condition for the expectation value to be finite.

For a continuous random variable the median m is derided as the value of x
such that F (m) = 1/2. Thus, the word ‘median’ is synonymous to ‘middle’, as
it defines the point where the distribution function is equal to its middle value.

Let’s define the initial moments of the random variable ξ:

µ′
k = M(xk) =

n
∑

i=1

xk
i pi, (39)

µ′
k =

∫ b

a

xkρ(x)dx, (40)

where the first expression is for the discrete case, and the second is for the con-
tinuous case. The k-th central moments are then defined as

µk = M
(

[x− ξ]k
)

. (41)
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It is clear from these definitions that µ′
0 = 1 and µ′

1 = ξ; also, µ0 = 1, µ1 = 0 and
µ2 = σ2; i.e. the first initial moment is equal to the expectation value, while the
second central moment is equal to the dispersion.

An important characteristic of a distribution function is the skewness A de-
fined as

A =
µ3

σ3
(42)

If the density ρ(x) is stretched on the left-hand side of the mean, then the skew-
ness is positive, and if the density is is stretched to the right, the skewness is
negative. If the distribution density is symmetric with respect to ξ, then the
asymmetry is zero.

The kurtosis of the distribution is defined as

E =
µ4

σ4
− 3. (43)

As will be seen later, for a Gaussian distribution µ4/σ
4 = 3 and hence E = 0.

So (for a symmetric distribution) the kurtosis tells us whether the distribution
density is squashed (for E < 0) or stretched (for E > 0) when compared to the
Gaussian distribution.

Consider a random variable ξ with distribution density ρ(x), and an arbitrary
monotonous function f(x). We would like to know the distribution density for a
random variable η which is related to ξ as η = f(ξ). Using the definition eq. (35)
we have:

Fη(x) = P{η < x} = P{f(ξ) < x} = P{ξ < f−1(x)} =

∫ f−1(x)

−∞
ρξ(t)dt. (44)

Here we assumed that the function f(x) is monotonously increasing. Now, from
the definitions we have

ρη(x) =
d

dx
Fη(x) =

d

dx

∫ f−1(x)

−∞
ρξ(t)dt = ρ

(

f−1(x)
) d

dx

(

f−1(x)
)

. (45)

If the function f(x) is monotonously decreasing, then g(x) = −f(x) will be an
increasing function and the above derivation would still be valid for g(x). So, in
general, one can write for an arbitrary monotonous function f(x):

ρf(x) = ρ
(

f−1(x)
)

∣

∣

∣

∣

d

dx

(

f−1(x)
)

∣

∣

∣

∣

. (46)

As for the expectation value of the random variable η, it can be shown that

Mf(ξ) =

∫ b

a

f(x)ρ(x)dx. (47)

Remember however, that Mf(ξ) 6= f(Mξ).
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3.3 Multi-dimensional random quantities (random vec-
tors)

The description of some experiments or observations may require several random
variables. In such cases, an occurrence will correspond to a point N(ξ1, ξ2, . . . , ξn)
in n-dimensional space – or, equivalently, a vector that starts at the origin and
ends at that point. The system of such random variables has some extra proper-
ties, in addition to the usual properties of the individual random variables. These
extra properties are linked with the inter-dependence of the variables comprising
the system.

Let’s introduce the concepts of the distribution function and density for vec-
tors of random variables, starting with the case of just two random variables X
and Y . The distribution function F (α, β) is defined as the probability that the
following two inequalities are satisfied simultaneously: X < α, Y < β. I.e.:

F (α, β) = P{X < α, Y < β} (48)

Geometrically, F (α, β) is the probability that a random point (X, Y ) is inside the
infinite rectangle which has the top-right corner at point M(α, β), as illustrated
in Figure 4. The function F (α, β) has the following properties:

Figure 4: Geometric interpretation of the Equation (48).

1. If α1 < α2, then F (α1, β) < F (α2, β). Also, if β1 < β2, then F (α, β1) <
F (α, β2).

2. The function equals zero everywhere at −∞, i.e. F (α,−∞) = F (−∞, β) =
F (−∞,−∞) = 0.
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3. If one of the arguments is equal to +∞, the function is equal to the distribu-
tion function of the other variable: F (α,+∞) = F1(α), F (+∞, β) = F2(β),
where F1(α) and F2(β) are the distribution functions of the variables X
and Y , respectively.

4. If both arguments are equal to +∞, the distribution function is equal to
unity: F (+∞,+∞) = 1. Indeed, in this case the hatched rectangle in
Figure 4 covers the whole plane, hence the probability to get inside is a
certainty, a necessary occurrence.

If the function F (α, β) is continuous and differentiable, then the function

ρ(α, β) =
∂F (α, β)

∂α∂β
(49)

is the density of the distribution function F . It can be used to find the probability
of finding the point inside some area D:

P{(X, Y ) ⊂ D} =

∫ ∫

D

ρ(α, β) dα dβ. (50)

The density ρ(α, β) must be non-negative, and the normalisation condition needs
to be satisfied:

∫ +∞

−∞

∫ +∞

−∞
ρ(α, β) dα dβ = 1. (51)

The distribution function F and its density ρ are related through the formula

F (α, β) =

∫ α

−∞

∫ β

−∞
ρ(γ, δ) dγ dδ. (52)

Using equation (52) and the property 3, one can obtain the distribution functions
of individual variables:

F1(α) =

∫ α

−∞

∫ +∞

−∞
ρ(γ, δ) dγ dδ ⇒ ρ1(α) =

∫ +∞

−∞
ρ(α, β) dβ, (53)

F2(β) =

∫ +∞

−∞

∫ β

−∞
ρ(γ, δ) dγ dδ ⇒ ρ2(β) =

∫ +∞

−∞
ρ(α, β) dα. (54)

So, for a our system of two random variables, in order to obtain the distribution
function for one random variable, the density should be integrated within infinite
limits over the other random variable.

If the two random variables are mutually independent, then

ρ(α, β) = ρ(α)ρ(β). (55)
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In analogy with equations (39-41) one can define initial moments µ′ and cen-

tral moments µ of order k, s:

µ′
k,s = M(xkys),

µk,s = M
(

[x−Mx]k[y −My]s
)

(56)

= M
(

[x−X]k[y − Y ]s
)

Similarly, for a 2-dimensional discrete variable one has:

µ′
k,s =

∑

i

∑

j

xk
i y

s
i pij,

µk,s =
∑

i

∑

j

[xi −X]k[yj − Y ]spij, (57)

where pij = P{X = xi, Y = yj} is the probability that the system (X, Y ) takes
the values xi, yj , while the summation in made over all possible values xi, yj .

For continuous random variables one has:

µ′
k,s =

∫ +∞

−∞

∫ +∞

−∞
xkysρ(x, y) dx dy,

µk,s =

∫ +∞

−∞

∫ +∞

−∞
(x−X)k(y − Y )sρ(x, y) dx dy, (58)

where ρ(x, y) is the probability density of the system.
Apart from the expectation values µ′

1,0 = MX,µ′
0,1 = MY , which define

the average values of coordinates x and y, and the respective dispersions µ2,0 =
DX,µ0,2 = DY , which define the spread of the values with respect to their
averages, there is an additional important characteristic, the mixed second-order
central moment

µ1,1 = M
(

[x−X][y − Y ]
)

= M(XY )−M(X)M(Y ), (59)

which is called covariance. This quantity characterises not just the scatter of
the values of x and y, but also their connection. For independent variables, the
covariance is equal to zero.

The correlation coefficient is defined as

R(X, Y ) =
µ1,1

σxσy

=
M(XY )−M(X)M(Y )

√

D(X)D(Y )
. (60)

It can be shown that the absolute value of R cannot exceed unity. If the variables
X and Y are independent, one has R(X, Y ) = 0, although uncorrelated does not
necessarily mean independent. To illustrate this, consider a random variable X
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such that M(X) = 0 and M(X3) = 0, while Y = X2. The covariance between
X and Y is

µ1,1 = M ([x− 0][y −M(Y )]) = M(X3)−M(X)M(X2) = 0, (61)

and, hence, the correlation coefficient is also zero, despite the fact that X and Y
are functionally linked and clearly cannot be independent.

A correlation is a probabilistic and/or statistical relationship between two
variables, somewhere in-between the functional dependence and statistical depen-
dence/independence. For random variables corresponding to mutually exclusive
occurrences, the correlation coefficient is equal to −1.

Everything that was said above about 2-dimensional random variables can be
generalised to the case when the number of dimensions n > 2.

Let ρ(x, y) be the probability density of a pair of random variables X and Y ,
and consider the sum Z = X + Y . What is the probability density for Z? Say,
z1 < Z < z2 and hence z1 < X + Y < z2, which means that a random point with
coordinates (X, Y ) lies within the shaded area D in Figure 5, which is limited by

Figure 5: Integration limits for a sum of two random variables.

the straight lines y = z1 − x and y = z2 − x. So the probability of occurrence
z1 < Z < z2 is:

P (z1 < Z < z2) =

∫ ∫

D

ρ(x, y) dx dy =

∫ +∞

−∞
dx

∫ z2−x

z1−x

ρ(x, y) dy =

=

∫ +∞

−∞
dx

∫ z2

z1

ρ(x, z − x) dz

=

∫ z2

z1

{
∫ +∞

−∞
ρ(x, z − x) dx

}

dz (62)
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where the change of integration variable was made, y = z − x, followed by the
change in the order of integration. From equation (62) one can see, that Z is a
random variable with the following distribution density:

ρZ(z) =

∫ +∞

−∞
ρ(x, z − x) dx. (63)

The case where the two variables X and Y are mutually independent is of special
interest, since in this case ρ(x, y) = ρ(x)ρ(y) and equation (63) takes the form

ρZ(z) =

∫ +∞

−∞
ρ(x)ρ(z − x) dx. (64)

Equation (64), which combines the two distributions in this particular way, is
called a convolution of the distributions ρ(x) and ρ(y).

Let X and Y be two independent random variables distributed uniformly
in the interval (0, 1). Let’s find the probability density of the random variable
Z = X + Y . We have

ρX(x) =

{

1, 0 ≤ x ≤ 1
0, x < 0 ∪ x > 1

ρY (z − x) =

{

1, 0 ≤ z − x ≤ 1
0, z − x < 0 ∪ z − x > 1

(65)

The density of the distribution ρZ(z) is only non-zero for 0 < x < z, z ⊂ (0, 1) ∪
z − 1 < x < 1, z ⊂ (1, 2), hence

ρZ(z) =







0, 0 < z ∪ z > 2
∫ z

0
dx = z, 0 ≤ z ≤ 1

∫ 1

z−1
dx = 2− z, 1 ≤ z ≤ 2

Geometrically, this is an isosceles triangle with the ends of the base at points with
coordinates (0, 0) and (2, 0), while the tip has coordinates (1, 1). It is easy to
check that the area of this triangle is equal to 1, which satisfies the normalisation
condition.

Some important distributions in probability theory retain their form under
composition. The Gaussian distribution and the Gamma distribution are the
examples of such distributions. We will discuss them in the following section.

4 Some important distributions and their prop-

erties

We have seen in the previous section that a discrete random variable is fully
defined by its distribution, while a continuous random variable is fully defined
by its distribution function or its density. Here we will study the properties of
several distributions, which are frequently needed in practice, in particular in
physics.
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4.1 Geometric and binomial distributions

Consider an experiment that is carried out an indefinite number of times in
perfectly identical conditions, and the results of each try are totally independent
from each other. Throwing dice or tossing a coin would be good examples of such
distributions. Let p = P (A) be the probability of getting a particular outcome,
occurrence A (e.g. ‘heads’ in a coin toss) in each individual experiment. Then
the probability of not getting occurrence A is P (A) = 1− p = q.

Consider a game of tossing a ring, aiming to land it on a vertical pole. Let p ∈
(0, 1) be the probability of an individual try being a success. Let’s determine the
probability that the success is achieved at the n-th try. The tries are considered
to be independent, and the number of tries X until the first success is a discrete
random variable taking values 1, 2, 3, . . . , n:

P{X = 1} = p

P{X = 2} = (1− p) · p = q · p, q ≡ 1− p

P{X = 3} = = q2 · p
. . .

P{X = n} = qn−1 · p, n = 1, 2, 3, . . .

This is called the geometric distribution. Let us add up individual probabilities:

p+ q · p+ q2 · p+ · · ·+ qn−1 · p+ . . . = p(1 + q + q2 + · · ·+ qn−1 + . . . )

=
p

1− q
= 1,

since the expression in brackets is a geometric progression, with the sum equal
to 1/(1− q). So the normalisation condition is satisfied:

∞
∑

n=1

pn = 1

The expectation value of this distribution is

M(X) =
∞
∑

n=1

n · p · qn−1 = p ·
( ∞
∑

n=1

qn

)′

= p ·
(

q

1− q

)′
=

p

(1− q)2
=

p

p2
=

1

p
,

since (qn)′ = nqn−1 and

∞
∑

n=1

qn = q

∞
∑

n=1

qn−1 =
q

1− q
.

Let’s study a more general problem: what’s the probability of getting m
successes (i.e. m cases of occurrence A) in n tries? Since the tries are independent,
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the probability that A happens in each of m tries and does not happen in any
of n−m tries is equal to the product of individual probabilities pm · qn−m. This
combination, however, is not unique, the total number of such combinations is
Cm

n = n!
m!(n−m)!

, and they are all mutually exclusive. The number Cm
n describes the

number of possibilities to select m elements out of n elements. So the probability
in question will be the sum of individual probabilities:

Pn(m) =
n!

m!(n−m)!
pm · qn−m. (66)

This equation describes Bernoulli’s binomial distribution. It is characterised by
two parameters: n and p. The distribution is called binomial, because the indi-
vidual terms Pn(m) show up in the expansion of the expression (p+ q)n.

Once again, let p be the probability of occurrence A taking place, i.e. p =
P (A). Let’s introduce the concept of the indicator IA of occurrence A, which
equals 1 if A took place, and equals zero if it did not. Then the indicator is a
random variable with the following distribution:

X = IA =

{

1, 0
p, 1− p

}

.

This is a special case of the binomial distribution with n = 1, first introduced by
Bernoulli. Let’s calculate its mean and variance:

M(IA) = 1 · p+ 0 · q = p,

D(IA) = M [IA −M(IA)]
2 = M(IA − p)2 = (1− p)2p+ (0− p)2q = pq

Calculating the mean of the binomial distribution directly is somewhat awkward,
so we will present the binomial occurrence X (number of positive outcomes from
n tries) as a sum of simple, indicator-type occurrences Xk: each of these is equal
to 1 if the occurrence took place on the k-th attempt, and is equal to 0 otherwise.
Then

X = X1 +X2 +X3 + · · ·+Xn.

This sum contains only ones and zeroes, and the number of ones is equal to
the number of successful occurrences in n attempts. Since these occurrences are
independent, one has

M(X) = M(X1) +M(X2) +M(X3) + · · ·+M(Xn) = n · p,
D(X) = D(X1) +D(X2) +D(X3) + · · ·+D(Xn) = n · p · q.

So the mean of the binomial distribution is n · p and its dispersion is n · p · q. The
skewness A is

A =
q − p√
n · p · q =

1− 2p
√

n · p · (1− p)
.
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Figure 6: Examples of binomial distributions. Corresponding cumulative func-
tions are shown at bottom right.

You can see that A < 0 if p < 1
2
, A = 0 if p = 1

2
and A > 0 if p > 1

2
.

Three examples of the binomial distribution are shown in Figure 6. Blue
points describe the number of female babies in 20 newborns. In this example,
the probability p of a girl being born in a “single attempt” is p = 1

2
, the number

of girls m can be any number between 0 and 20, while n is fixed to 20. From
the plot you can see that the curve has a maximum at m = 10; probabilities
of having 6 or 14 girl babies are about 6 times smaller than the maximum and
are equally probable; the distribution is symmetric with respect to the mean at
n · p = 20 · 0.5 = 10.

For large n equation (66) is difficult to use, because n! can be a very big
number. In these cases one should use limiting forms of the binomial distribution:
for fixed p and n → ∞ it is the Gaussian distribution, while for n · p fixed and
n → ∞ it is the Poisson distribution. In the latter case it is clear that p ≪ 1.
The overview of these distributions is given below.

4.2 Poisson distribution

In practice we have to deal with events that happen randomly in time. Let’s
demand that the probability of the event happening within certain time interval τ
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does not depend on whether the event has happened in any other non-overlapping
time interval. The probability that the event happens within a small time interval
(t, t + ∆t) is also small and proportional to the length of the time interval ∆t,
while the probability that two events happen within this time interval is an even
smaller number of higher order in ∆t. Let pm(t1, t2) be the probability that m
events happen within the time interval (t1, t2). Then, the above conditions can
be written in the following way:

pm(t, t+∆t) = λ(t)∆t+ O(∆t),
∞
∑

k=2

pk(t, t+∆t) = O(∆t), (67)

where λ(t) is a non-negative function of time, while

lim
∆t→0

O(∆t)

∆t
= 0

. Let’s try to determine the distribution law for a random variable that satisfies
these conditions.

Let’s start counting time at t = t0. The probability only depends on the
length of the time interval; the occurrence did not happen within time interval
(t0, t + δt) if it did not happen within intervals (t0, t) and (t, t + δt). Let p0 be
the probability that the occurrence did not take place. Then

p0(t+ δt) = p0(t0, t) · p0(t, t+ δt) ≡ p0(t) · p0(δt).
From conditions (67) and the completeness condition for the interval (t, t + δt),
during that interval the occurrence can happen either 0 times, or once, or twice,
or more times. Hence:

p0(δt) + p1(δt) +
∞
∑

k=2

pk(δt) = 1,

p0(δt) = 1− λ · δt+ O(δt)

For the probability at starting point, t0 = t, δt → 0 we get p0(t0) = 1.
Assume for simplicity that λ is a constant function of time, λ(t) = λ = const

(this would be the case, for example, for the number of electrons per unit time
emitted from a cathode). Then

p0(t+ δt) = p0(t) · [1− λ · δt+ O(δt)],

p0(t+ δt)− p0(t)

δt
= −λ · p0(t) + p0(t)

O(δt)

δt
.

In the limit δt → 0 we get

p0(t) = −λ · p0(t),
p0(t) = e−λt.
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Similarly, the probability of a single occurrence taking place is

p1(t+ δt) = p1(t) · [1− λ · δt+ O(δt)] + p0(t) · [λ · δt+ O(δt)],

since the event will take place either within (0, t) or within (t, t + δt) intervals.
Hence

p1(t+ δt)− p1(t)

δt
= −λ · p1(t) + p0(t) ·

[

O(δt)

δt

]

,

and in the limit δt → 0 we get the equation

p1(t) = −λ · p1(t) + λ · p0(t),
p1(t) = (λ · t) · e−λt.

Along the same lines one can show that

p2(t) =
1

2
(λ · t)2 · e−λt,

p3(t) =
1

2 · 3(λ · t)3 · e−λt, . . .

For a general term one gets the differential equation

p′m(t) = λ · [pm−1(t)− pm(t)], m = 0, 1, 2, . . .

with initial conditions p0 = 1, pm = 0, with a solution

pm(t) =
(λ · t)m
m!

· e−λt m = 0, 1, 2, . . .

In a more general case when λ = λ(t) is not a constant, the differential equation
for the probability looks like this:

p′m(t) = λ(t) · [pm−1(t)− pm(t)], m = 0, 1, 2, . . .

Define an independent variable µ =
∫ t

t0
λ(τ)dτ . Then the solution can be shown

to be

pm(t) =
µm

m!
· e−µ, m = 0, 1, 2, . . . (68)

Equation (68) defines the Poisson distribution, which describes the probability of
m = 0, 1, 2, . . . events taking place within the interval (t0, t). It clearly satisfies
the normalisation condition:

∞
∑

m=0

pm =
∞
∑

m=0

µm

m!
· e−µ = e−µ ·

∞
∑

m=0

µm

m!
= e−µ · eµ = 1.
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Figure 7: Examples of Poisson distribution, together with their respective cumu-
lative distributions.

Figure 7 shows examples of Poisson distributions for three values of parameter
µ, together with the respective cumulative distribution functions.

Let’s calculate the mean of the Poisson distribution:

M(X) =
∞
∑

m=0

m
µm

m!
· e−µ = µe−µ ·

∞
∑

m=1

µm−1

(m− 1)!
= µe−µ · eµ = µ.

This result clarifies the physical meaning of the parameter µ: it is equal to the
mean number of events taking place within the interval (t0, t).

In order to calculate the dispersion of the Poisson distribution, let’s calculate
first the quantity

M(X(X − 1)) =
∞
∑

m=0

m(m− 1)
µm

m!
· e−µ = µ2e−µ ·

∞
∑

m=2

µm−2

(m− 2)!
= µ2e−µ · eµ

= µ2.

Hence we have

M(X2) = M(X(X − 1)) +M(X) = µ2 + µ,

D(X) = M(X2)− (M(X))2 = (µ2 + µ)− µ2 = µ
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So both the mean and the dispersion of the Poisson distribution are equal to
µ. The skewness A and the kurtosis E of the Poisson distribution can also be
calculated: A = 1/

√
µ,E = 1/µ.

It appears that for small values of the probability p the Binomial distribution
can at large n be approximated by the Poisson distribution:

Pn(m) ≈ (n · p)m
m!

e−n·p. (69)

Figure 8 illustrates how the binomial distribution transforms in the limit into the

Figure 8: Left column: transformation of the binomial distribution into the Pois-
son distribution in the limit n ·p = const, n → ∞. Right column: transformation
of the binomial distribution into the Gaussian distribution in the limit of fixed p,
n → ∞.

Poisson (left column) and Gaussian (right column) distributions. One can also
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see that for larger values of µ the Poisson distribution is close to the Gaussian
distribution.

4.3 Uniformly distributed random variable

Consider a random variable r defined on the interval x ∈ [0, 1] with probability
density ρ(x) = 1. This variable is said to be uniformly distributed over the
interval [0, 1]. The graph of this distribution is shown in Figure 9. The probability

Figure 9: Random variable uniformly distributed over the interval [0, 1].

of x falling within an interval a′, b′ is

P{a′ < x < b′} =

∫ b′

a′
ρ(x) dx = b′ − a′, (70)

i.e. it is equal to the length of the interval. If we divide the interval [0, 1] into
any number n of sub-intervals of equal length, the probability of x falling into
any of the subintervals is equal to 1/n. It is easy to show by direct calculation
that the mean Mr of the variable uniformly distributed on the interval [0, 1] is
equal to 1/2, while its dispersion Dr is equal to 1/12.

In practical calculations the quantity 1 − r is sometimes used instead of r,
with the same distribution function as for r. Sometimes the symbol γ is used
instead or r.

More generally, for a uniform distribution over the interval [a, b], one has:

a ≤ x ≤ b, ρ(x) =
1

b− a
, Mr =

a+ b

2
, Dr =

(a+ b)2

12
.
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The plots illustrating the uniform distribution density and its respective cumu-
lative distribution are shown in Figure 10.

Figure 10: The density of a uniformly distributed random variable and its cumu-
lative distribution.

4.4 Gaussian (normal) distribution

Random variables distributed according to the Gaussian (otherwise known as
normal distribution play an important role in probability theory. This distribu-
tion is defined on the whole axis (−∞,+∞) and has the following density:

ρ(x) =
1

σ
√
2π

exp

[

−(x− a)2

2σ2

]

, (71)

where a and σ > 0 are numerical parameters. The parameter a has no influence
on the shape of the curve y = ρ(x) but rather simply shifts the curve along the
x axis, while parameter σ defines the shape of the curve. In particular,

max ρ(x) = ρ(a) =
1

σ
√
2π

,

so that decreasing σ means increasing the height of the distribution. Since the
area under the distribution (71) is normalised, the increase in height must be
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compensated by the narrowing of the distribution. Figure 11 shows examples
of the Gaussian distribution for various values of its parameters: for larger σ

Figure 11: The Gaussian (normal) distribution density and its matching cumu-
lative distribution for 4 different sets of parameter values.

the distribution becomes wider and lower. The standard Gaussian distribution

corresponds to the choice of parameters a = 0, σ = 1:

ρ(x) =
1√
2π

exp

[

−x2

2

]

.

This function has the following properties:

a) it is symmetric with respect to x = 0, i.e. ρ(x) = ρ(−x);

b) max ρ(x) = 1√
2π

≈ 0.40;

c) the inflection points lie at x = ±1, where the probability density ρ is equal
to ρ(±1) = 1√

2πe
≈ 0.24;

d) the probability falls sharply with increasing |x|: ρ(|2|) = 0.05, ρ(|3|) = 0.003
etc.
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It can be shown that the mean Mξ of the Gaussian distribution (71) is equal to
a, the dispersion Dξ is equal to σ2 and its skewness A = 0, since it is symmetric
w.r.t. its mean.

Another example of the Gaussian distribution is shown in Figure 8 (bottom
left), as a limiting case of the binomial distribution. In this example the mean
value is 9.

When dealing with the Gaussian distribution, any probability of the type
P{x′ < ξ < x′′} can be calculated using special tables where the values of the
Laplace function (otherwise sometime known as the probability integral) are tab-
ulated. The latter is defined as

Φ(x) =
1√
2π

∫ x

0

e−
t2

2 (72)

Indeed, using equation (32) we have

P{x′ < ξ < x′′} =
1

σ
√
2π

∫ x′′

x′

exp

[

−(x− a)2

2σ2

]

dx.

Substituting x− a = σt we get

P{x′ < ξ < x′′} =
1√
2π

∫ t2

t1

exp

[

−t2

2

]

dt,

where t1 = (x′ − a)/σ and t2 = (x′′ − a)/σ. Hence

P{x′ < ξ < x′′} = Φ(t2)− Φ(t1).

Note that Φ(−t) = −Φ(t).
Let’s look at specific examples. First, choose x′ = a − 3σ, x′′ = a + σ, which

corresponds to t1 = −3, t2 = +3. From the table of integral (72) we can calculate
the probability

P{a− 3σ < ξ < a+ 3σ} = 2Φ(3) = 0.997. (73)

This probability is quite close to unity. Its interpretation goes like this: the
probability that a measured value falls outside ±3σ of the mean is less than
0.3%, i.e. is usually negligibly small (that is, of course, if the variable in question
is distributed according to a Gaussian distribution!).

One also has:

P{a− σ < ξ < a+ σ} = 2Φ(1) ≈ 0.68.

If r = 0.6745 then one has from the same table:

P{a− rσ < ξ < a+ rσ} = 2Φ(0.6745) = 0.5. (74)

37



This means that P{| ξ−a
σ
| < r} = 0.5 and P{| ξ−a

σ
| > r} = 0.5, with, of course,

P{| ξ−a
σ
| = r} = 0. Hence, the deviation of the normally distributed random

variable is equally probable by less than and more than r · σ. The value r · σ is
sometimes called the probable error.

Results of experimental measurements in physics are often presented in the
form y ± ∆y, where ∆y is the root-mean-square deviation. For a Gaussian-
distributed random variable, this would be σ. Hence, this result has a fairly
modest confidence level of about 68%, meaning that there is (only) a 68% prob-
ability that the value lies within the confidence interval (y −∆y, y + ∆y), so in
about 1/3 of cases the result will fall outside this interval.

The topic of confidence levels and confidence intervals will be discussed in
more detail in the following section.

4.5 χ2 distribution

Consider a random variable ξ which obeys the standard Gaussian distribution

ρ(x) = 1√
2π

exp
[

−x2

2

]

, and we need to determine how the random variable η = ξ2

is distributed. We can achieve this task using the equation (46), with f(x) = x2

and hence f−1(x) = x
1
2 , so that d

dx
[f−1(x)] = 1

2
x− 1

2 . So the density of variable η
is

ρη(x) =
1

2
√
2πx

exp
[

−x

2

]

, x > 0. (75)

Consider now a set of random variables ξ1, ξ2, . . . ξn distributed according to
the standard Gaussian. Then the random variable

χ2
n =

n
∑

i=1

ξ2i (76)

is distributed according to the χ2 distribution with n degrees of freedom. It can
be shown that its density is

ρn(x) = Cnx
n
2
−1 exp

(

−x

2

)

, x > 0. (77)

where Cn =
[

2
n
2Γ

(

n
2

)]−1
, with Euler’s Γ function defined as Γ(p) =

∫ 1

0
xp−1e−xdx.

Some examples of this distribution are shown in Figure 12.
The χ2 distribution has one parameter n, number of degrees of freedom, and

hence it can be easily tabulated. Its mean M is equal to n and its dispersion D
is equal to 2n, skewness A is 2

√

2/n and kurtosis E = 12/n.
Note that the distribution shown in equation (75) corresponds to the χ2 dis-

tribution with one degree of freedom. In the limit of large n the χ2 distribution
can be approximated by a Gaussian with mean n and dispersion 2n.
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Figure 12: Examples of χ2 distributions for different values of parameter n, to-
gether with its respective cumulative distributions.

Let ξ be a standard Gaussian-distributed random variable, while variable χ
obeys a χ2 distribution with k = n−1 degrees of freedom. Then the combination
t = ξ

√
n/χ is a random variable distributed according to Student’s distribution

with density

ρ(t) =
1√
kπ

Γ
(

k+1
2

)

Γ
(

k
2

)

(

1 +
t2

k

)
k+1
2

. (78)

Student’s distribution plays an important role in the studies of validity of various
statistical hypotheses.

In the special case n = 2 the Student’s distribution (76) becomes Cauchy’s

distribution with density

ρ(t) =
1

π · (1 + t2)
. (79)

Both the mode and the median of this distribution are equal to zero, but the
mean, dispersion and higher moments do not exist, since the corresponding in-
tegrals are divergent. To quantify the width of the distribution, its full width
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at half maximum (FWHM) is used, which is equal to 2. If θ is a uniformly
distributed random variable on interval (−π/2,+π/2) then x = tan θ will be
distributed according to equation (79). Also, if y and z are two independent
normally distributed variables, then the variable x = y/z will follow the Cauchy
distribution.

The Lorentz distribution, also called the Breit-Wigner distribution, is a more
general form of equation (79), which is often used to describe resonances in high
energy physics. Its density is

f(x) =
1

π

Γ/2

(x− x0)2 + Γ2/4
, (80)

where x0 is the mode and Γ is full height at half maximum. In the relativistic
limit, where the momenta of particles are much larger than their masses, one
often uses a relativistic version of the Breit-Wigner distribution, which is slightly
asymmetric and has a longer ‘tail’ at high x:

f(x) ∝ 1

(x2 −M2
0 )

2 +M2
0Γ

2
. (81)

Here x is the centre-of-mass energy of the resonance, M0 is its mass, and γ is its
decay width, the reciprocal of its decay time τ : Γ = 1/tau. In general, Γ has
some dependence on the energy x, the fact which may become important if the
width Γ is not much smaller than the mass M0 (for example, in the decay of the
Z boson into a fermion-antifermion pair, Z0 → ff). Sometimes the term M2

0Γ
2

in equation (80) is replaced by Γ2E4/M2
0 .

In Figure 13 some examples of Cauchy distributions are shown for a number
of parameter values.

Yet another important distribution, often used for checking various hypothe-
ses, is Fisher’s distribution. If χ1 and χ2 are random variables governed by the
χ2 distributions with n1 and n2 degrees of freedom respectively, then the com-
bination f = (χ1/n1)/(χ2/n2) = (n2χ1)/(n1χ2) follows Fisher’s distribution. Its
density is

ρ(f) =
C · f (n1−2)/2

(n1f + n2)(n1 + n2)/2
, (82)

where the normalisation constant C is equal to

C =
Γ
(

n1

2
+ n2

2

)

Γ
(

n1

2

)

· Γ
(

n2

2

) · nn1/2
1 · nn2/2

2 .

4.6 Generating a random variable with a given distribu-
tion

Our task is to develop a way of obtaining a random variable ξ with a given
probability distribution density ρ(x) defined on an interval (a, b), based on a
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Figure 13: Examples of Cauchy/Lorentz/Breit-Wigner distributions for different
values of parameters, together with their respective cumulative distributions.

uniformly distributed variable r defined on the interval [0, 1]. This procedure is
based on Monte Carlo method, and is sometimes also referred to as sampling of
the variable ξ.

The sought relationship between the variables x and r can be obtained from
the definition F (x) =

∫ x

−∞ ρ(x)dx (see equation (35), if we can solve the equation

F (x) = r (83)

If the inverse function F−1 exists, then the solution of equation (83) can be
written as

x = F−1(r) (84)

Indeed, we know that r is distributed uniformly on interval [0, 1], and equa-
tion (83) states that F (x) is also distributed in the same way. But for the uni-
form distribution the probability that F (x) falls within the interval [F (x), F (x)+
dF (x)] is equal to the length of that interval, dw = dF (x). On the other hand,
from equation (35) we have:

dF (x) = ρ(x) dx ⇒ dw = ρ(x) dx,
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which means that the random variable x is distributed with density ρ(x), as
required. Hence, in order to obtain a random variable with distribution density
ρ(x), we need to solve equation (84).

Figure 14 illustrates how a uniform variable u defined on an interval [0, 1] can

Figure 14: Geometric interpretation of equations (83) and (84) for a continuous
(top) and discrete (bottom) cases.

be used to obtain the variable x with a pre-defined cumulative distribution F (x).
The top figure refers to a continuous random variable, while the bottom figure
describes the procedure for a discrete random variable. In the latter case f(xk)
is the probability of x falling within the interval (xk, xk+1), and the sought values
of xk are obtained from the conditions

F (xk−1) < u < F (xk) ≡ P{x ≤ xk} =
k

∑

i=1

f(xi),

where F (x0) ≡ 0.
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As an example, consider a random variable ξ distributed uniformly in the
interval (a, b). Then, from equation (70), its probability density is ρ(x) = 1/(b−
a). Use equations (83) to obtain the sampling formula for ξ:

∫ ξ

a

dx

b− a
, ⇒ ξ − a

b− a
= r ⇒ ξ = a+ r(b− a). (85)

This expression allows us to generate a random variable uniformly distributed in
the interval (a, b).

Another example would be to model the process of the radioactive decay of
an unstable isotope in the time interval t = (a, b). We know that the decay
probability follows the exponential law, f(t) = 1

τ
exp(− t

τ
), where τ is the mean

life of the isotope.
In order to simulate this process, we need to calculate in advance the quantities

α = exp(−a
τ
) and β = exp(− b

τ
) and use them to generate, for each value of r,

the quantity

t = −τ ln[β + r(α− β)]. (86)

Thus obtained values of t will have the required distribution f(t).
In practice it is often necessary to generate decays which are isotropic in

space, such as α-decays of various nuclei. Isotropic is the decay with the spherical
symmetry, i.e. where the direction of flight of the radiated α particle is uniformly
distributed over the surface of the sphere whose centre is placed at the origin of
the decay. This means that if the decay directions are characterised with unit
vectors, the density of these unit vectors on the surface of the sphere of unit
radius is proportional to the solid angle. The direction in a 3-dimensional space
is characterised by two angles: the azimuthal angle φ which varies in the interval
0, 2π and the polar angle θ which varies within 0, π. The solid angle element dΩ
in polar coordinates is calculated as dΩ = sin θdθdφ = d(cos θ)dφ. Isotropy will
be achieved, if the angle φ is generated uniformly in the interval (0, 2π) and cos θ
is generated uniformly within (−1, 1). This will be achieved if we generate two
independent uniform random numbers r1 and r2 from the interval [0, 1] and then
calculate φ as 2πr1 and cos θ as (2r2 − 1).

What do we do if the explicit form of the function F (x) cannot be found?
This can happen if the r.h.s. in expression (35) and/or the inverse function in
equation (84) can only be obtained numerically. This is often the case, for ex-
ample, for Gaussian-distributed variables. Here we consider two ways of tackling
this problem.

In the next section we will show that a normally distributed random variable
can be obtained based on the central limit theorem. Consider a random variable
ζ which is a (normalised) sum of n uniformly-distributed random variables:

ζ(n) =

√

3

n
·

n
∑

i=1

(2ri − 1). (87)
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It appears that with n as low as 12, the distribution is acceptably close to the
standard Gaussian distribution:

ζ ≈ ζ(12) =
1

∑

i=1

2ri − 6. (88)

In practice a modified formula is usually used, which increases the sampling speed
and improves convergence:

ζ ≈ 0.0109ζ(5)
[

97 + (ζ(5))2
]

. (89)

The other method of generating Gaussian-distributed variables is the Box-
Müller method. Consider two independent variables ξ and η, each sampled from
the standard normal distribution. Then, in Cartesian coordinate system (on the
XOY plane) the density of points with coordinates (ξ, η) is given by the product
of the two Gaussian distributions:

ρ(x, y) =
1√
2π

e−x2/2 · 1√
2π

e−y2/2 =
1

2π
e−(x2+y2)/2. (90)

In polar coordinates (r, φ) one has x = r cosφ and y = r sinφ. Let (ζ, θ) be the
coordinates of the random point (ξ, η) in terms of the new (polar) coordinates.
Obviously, ξ = ζ cos θ, η = ζ sin θ. The transformation of a distribution from one
system of coordinates to another is done using the Jacobian of the transforma-
tion, J :

ρ̂(r, φ) dr dφ = J ρ(x, y) dx dy, (91)

where the Jacobian is

J =

∣

∣

∣

∣

∂(x, y)

∂(r, φ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂x
∂r

∂x
∂φ

∂y
∂r

∂y
∂φ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

cosφ sinφ
−r sinφ r cosφ

∣

∣

∣

∣

= r(cos2 φ+ sin2 φ) = r.

Hence, the distribution density (91) takes the form

ρ̂(r, φ) =
1

2π
re−r2/2. (92)

As we see, in polar coordinates the dependences on variables r and φ are sepa-
rated:

ρ̂(r, φ) = ρ1(r) · ρ2(φ),
ρ1(r) = re−r2/2, ρ2(φ) =

1

2π
. (93)

44



Sampling the distributions ρ1(r) and ρ2(φ) is not a problem, one just needs to
apply the equation (35) with the correct limits, (0 < r < ∞) and (0 < φ < 2π),
and then solve equation (83) for each case. The integrations lead to the functions

F1(r) = 1− e−r2/2, F2(φ) =
φ

2π
. (94)

The distributions for random variables ζ and θ are obtained from equations

F1(ζ) = 1− γ1, F2(φ) = γ2,

where γ1 and γ2 are random variables uniformly distributed in the interval [0, 1].
In particular

ζ =
√

−2 ln γ1, θ = 2πγ2. (95)

Finally, for the random variables ξ and η we get

ξ =
√

−2 ln γ1 cos(2πγ2), η =
√

−2 ln γ1 sin(2πγ2). (96)

These are distributed according to the standard Gaussian (normal) distributions.
The random variables

x = m+ σξ, y = n+ ση (97)

will have Gaussian distributions with widths σ, centered at m and n respectively.
Let’s get back now to the problem of generating a variable with an arbitrary

probability density distribution ρ(x) defined in the interval (a, b). In the most
general case, one can use von Neumann’s rejection sampling method. Find an
envelope function T(x) which satisfies the condition T (x) > ρ(x) for all x ∈ (a, b).
For simplicity, T (x) can be chosen as a constant C which is as close as possible
to the maximum of ρ(x), as this helps improve the rejection efficiency. Now let’s
generate two random numbers r1 and r2, the first uniformly distributed in the
interval (a, b), and the other uniformly distributed in the interval (0, C). If the
condition r2 > ρ(r1) is satisfied, then the number r1 is rejected; if not, then it
is stored. This procedure is repeated multiple times, and the collection of stored
numbers r1 is distributed according to the desired density function ρ(x) defined
in the interval (a, b). The method is illustrated by Figure 15 (a).

If the input function ρ(x) is varying strongly, then the rejection method as
defined above can be inefficient. In such cases one can use a piecewise constant
density function as the envelope, or use some kind of variable transformation.
There is no universal recipe for efficiency optimisation, the exact recipe will de-
pend on the problem at hand and the experience of the user. Figure 15 (b)
illustrates how the efficiency of the method can be improved by choosing a dif-
ferent constant function for different subintervals of the variable x.
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Figure 15: The illustration of Neumann’s method of generating a random variable
with an arbitrary density. Here f(x) is the required density ρ(x), h(x) is a uniform
distribution normalised to unity, and C is a constant.

This method is used to obtain a fast sampling of Gaussian-distributed random
variables, since the method explained above requires calculating trigonometric
functions (see equation (35)) which are rather expensive in CPU time. Instead,
two uniformly distributed random variables r1 and r2 are used to calculate vari-
ables v1 = 2r1−1 and v2 = 2r2−1, which, of course, are distributed uniformly in
the interval (−1,+1). Now calculate R2 = v21 +v22. If R

2 > 1, reject the sampling
and start again. For those R2 which are less than 1, calculate

z1 = v1

√

−2 lnR2

R2
, z2 = v2

√

−2 lnR2

R2
. (98)

Variables z1 and z2 are independent, and are each distributed according to the
Gaussian distribution with mean of zero and unit width.

5 Elements of mathematical statistics

Consider a collection of similar elements which are united into a single group by
one common property, but can be separated into a number of subgroups with
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respect to some other properties. Such set of elements is called a general set,
while the elements of the general set are said to be its members. The number of
members defines the volume of the general set. The properties (characteristics)
which are used to sub-divide the general set into subsets are called the arguments

of the set, while the numbers of elements contributing to individual subsets are
called variation frequencies.

For example, the collection of scientists working in a research institute forms a
general set consisting of 100 people. These are divided into two subsets, theorists
and experimentalists, with numbers of 30 and 70 respectively. Here 100 is the
volume of the general set, while ”theorist” and ”experimentalist” are arguments,
with respective variation frequencies of 30 and 70. We could have subdivided
the scientists into a number of groups according to their age, in which case age
would have become one of the arguments. The general property that unites all
members of the set is that they all are scientists and hence participate in some
kind of research activity, e.g. publish papers in scientific journals.

If the volume of the general set is large, it is practically impossible to study
in detail each element of the set (which would have given us the exhaustive infor-
mation about the set). In such cases a random subset (a sample) of the general
set is selected, with the number of elements of the sample being its volume. The
selected (‘sampled’) elements are studied in detail, and, based on these studies,
conclusions are made about the composition and properties of the general sam-
ple. The main aim of the mathematical statistics is just that: estimating various
numerical characteristics (in particular, things like the expectation value, disper-
sion etc.) of the general set, based on a subset sample. We will consider this task
in this chapter. Mathematical statistics has another aim as well, to asses the
validity of various hypotheses; we do not cover this topic in our lecture course.

In some sense, the problems of mathematical statistics are the inverse of the
problems of the probability theory. In probability theory we know the model
and we try to describe (or predict) the variety of possible developments, whereas
in mathematical statistics we start from experimental observations and try to
figure out the model. Because of this link, many methods and tools used in
the probability theory are also used in mathematical statistics. Mathematical
statistics is part of the field of applied mathematics, which is developed using
induction.

Consider a random sampling of n values x1, x2, . . . , xn of a random variable
X, which are obtained from n independent experiments. Mathematical statistics
views these as n random variables X1, X2, . . . , Xn which belong to the same dis-
tribution as X, and hence have the same numerical characteristics such as mean,
dispersion etc.

Let’s try to estimate the value of some parameter θ which characterises the
theoretical distribution, based on experimental data. The parameter in question
can be the mean of the distribution, its dispersion, or something else. If the value
θ̂n of the parameter, calculated with the sample x1, x2, . . . , xn, comes closer and
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closer to the true θ with increasing n, so that

lim
n→∞

P ({|θ̂n − θ| < ε} = 1, (99)

where ε > 0 is an infinitesimally small number, then θ̂n is said to be a consistent

estimator of θ. Clearly, since θ̂n is calculated by random sampling of a random
variable, it itself is a random variable, and hence should be treated as such.

With a small sample, an unbiased estimator is usually used. This is an esti-
mator θ̂n whose expectation value M(θ̂n) is equal to the true value θ.

A consistent and unbiased estimator is sometimes called a point estimator,
which can be considered to be ‘the best guess’ based on available data. For a
small sample, a point estimator can deviate substantially from the true value, so
it will only make sense if one can assign some uncertainty limits to its value. In
other words, one needs to establish an interval of values which, with a certain
probability, will contain the true value of the parameter. It is called the confidence
interval.

We will now state, without proof, a hugely important theorem in the theory of
random variables. For further information, please see reference [2], pp. 159-168.

Consider a large number N of mutually independent variables ξ1, ξ2, . . . , ξN
which share the same probability distribution function. Then their means and
dispersions will also be the same:

Mξ1 = Mξ2 = · · · = MξN ≡ m, (100)

Dξ1 = Dξ2 = · · · = DξN ≡ σ2.

Consider now the sample mean

ξ =
1

n

n
∑

i=1

ξi

for a subset of n variables, and calculate its expectation value:

M(ξ) =
1

n
M

(

n
∑

i=1

ξi

)

=
1

n

n
∑

i=1

M (ξi) =
1

n
· n ·M(ξ) = M(ξ) = m (101)

It appears that in the limit of large n, the sample mean is equal to the true mean
of the variable ξ:

P{|ξ −m| < ε} → 1, or lim
n→∞

P

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

ξi −m

∣

∣

∣

∣

∣

< ε

}

= 1, (102)

where ε is infinitesimally small, and hence the sample mean is a consistent and
unbiased estimator of the true mean of the variable ξ. This statement is often
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called the law of large numbers, which was first introduced in this form byMarkov.
This is an extremely important theorem, which in fact states that the net result
of a large number of random factors, although a random variable by its nature,
is not that random any more and can be predicted with high confidence. So it
is sometimes also referred to as the law of stability of the mean. Chebyshev sub-
sequently proved a more general form of the law, where it is no longer necessary
for the random variables to belong to the same distribution, they just need to be
mutually independent, and each should have a finite mean and dispersion:

lim
n→∞

P

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

ξi −
1

n

n
∑

i=1

M(ξi)

∣

∣

∣

∣

∣

< ε

}

= 1. (103)

Here the first term in brackets is a random variable, while the second term is a
constant.

As for the dispersion of the sample mean, one has:

D(ξ) = D

(

1

n

n
∑

i=1

ξi

)

=
1

n2
D

(

n
∑

i=1

ξi

)

=
1

n2

n
∑

i=1

D(ξi) =
nσ2

n2
=

σ2

n
, (104)

i.e. the dispersion of the sample mean is n times smaller than the dispersion of
the random variable ξ itself.

In analogy with sample mean, we can introduce the concept of sample disper-

sion:

s2 =
1

n

n
∑

i=1

(

ξi − ξ
)2

=
1

n

n
∑

i=1

ξ2i −
(

ξ
)2

. (105)

Let’s calculate the expectation value of the sample dispersion:

M(s2) = M

[

1

n

n
∑

i=1

ξ2i −
(

ξ
)2

]

=
1

n

n
∑

i=1

M(ξ2i )−M
[

(

ξ
)2
]

=
n

n
M(ξ2)−M

[

(

ξ
)2
]

=
[

Dξ + (Mξ)2
]

−
[

Dξ +
(

Mξ
)2
]

= (σ2 +m2)−
(σ

n
+m2

)

=
n− 1

n
σ2, (106)

where we used the result of equation (104) and the property Mξ2 = Dξ+(Mξ)2.
From equation (106) you can see that if the sample dispersion is calculated like
this:

s2 =
1

n− 1

n
∑

i=1

(

ξi − ξ
)2

, (107)

then s2 becomes a consistent and unbiased estimator of the true dispersion of ξ.
The emergence of (n − 1) in the denominator instead of n reflects the fact that
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the values ξi are no longer independent, since they were used to calculate the
sample mean, which in its turn was used in equation (107).

Let’s now consider a different problem. Let ξ be the sum of N independent
random variables ξ1, ξ2, . . . , ξN where ξi have the same probability distributions,
χ = ξ1 + ξ2 + · · · + ξN . This sum is in itself a random variable, whose mean
and dispersion can be easily calculated using equation (100) and properties (22)
and (26):

Mχ = Nm, Dχ = Nσ2.

Now let ζN be a normally distributed random variable with the same mean
Nm and the same dispersion Nσ2 as χ. It can be shown that for any interval
(a, b) the following approximate equation is valid:

P{a < χ < b} ≈
∫ b

a

ρζ(x) dx, (108)

where ρζ is the probability density of the variable ζN . This means that the sum of
a large number of similar random variables is distributed as a normal (Gaussian)
random variable. This statement is known as the central limit theorem, and
was originally formulated by Laplace. Subsequently Chebyshev, Markov and
Lyapunov showed that it is also true in a more general case: it is not necessary
for the members of the sum χ to be independent and to belong to the same
distribution, it’s only required that individual terms do not play a significant role
in the sum. The theorem explains why the Gaussian distribution are so often
observed in nature: when a large number of minor factors are affecting a random
variable, the resulting distribution tends to be a Gaussian.

Now consider a normally distributed general set, and let’s try to estimate its
expectation value and determine its confidence interval. Let’s select a random
sampling ξ1, ξ2, . . . , ξn which, of course, is also distributed normally, and our aim
is to determine M(ξi) = m. We will consider separately two cases, when the
dispersion of the general set is a) known and b) unknown.

a) The dispersion D(ξi) = σ2 of the general set is known.

Consider the variable z = ξ−m
σ/

√
n
. Since ξ is distributed normally, so is z,

except for z the following is true: M(z) = 0, D(z) = 1. Hence the probability

distribution for z is ρξ(z) = 1√
2π

exp
(

− z2

2

)

. Now, using equation (32) we can

calculate the probability

P

{∣

∣

∣

∣

ξ −m

σ/
√
n

∣

∣

∣

∣

< δ

}

=
1√
2π

∫ δ

−δ

e−z2/2dz = 2Φ(δ) = γ, (109)

where Φ is Laplace’s function, and using its tables for any δ one can estimate the
value of γ, or vice-versa, for any given γ one can calculate the matching value of
δ (which would correspond to the one-sided probability γ/2).
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The inequality
∣

∣

∣

ξ−m
σ/

√
n

∣

∣

∣
< δ can be rewritten as

ξ − σδ√
n
< m < ξ +

σδ√
n
. (110)

Hence the interval
(

ξ − σδ√
n
, ξ + σδ√

n

)

is the confidence interval for the expectation

value of m, corresponding to the confidence probability γ calculated with equa-
tion (110). γ is usually quoted in % and is also sometimes called confidence level

(C.L.).
Since the sample mean ξ is a random variable, the position of the confidence

interval on the ξ axis will vary from one experiment to another. The meaning of
equation (110) is the following: if a variety of random samplings are used, and ξ
and σδ/

√
n are calculated for each of these, then in γ% of cases the confidence

interval will include the value of the true mean m (which, of course, is unknown).

b) The dispersion of the general set is unknown.

Once again, the task is to obtain an estimate of the confidence interval for the
expectation value m of a normally distributed random variable, except this time

the dispersion (and hence σ) is unknown. Consider again the variable z = ξ−m
σ/

√
n
,

which is also normally distributed. The quantity

V 2 =
n

∑

i=1

(

ξi − ξ

σ

)2

=
n · s2
σ2

,

where s2 is the sample dispersion, has the χ2 distribution with n − 1 degrees of
freedom (see equation (75)). Consequently, the variable

t =
z
√
n− 1

V
=

ξ −m

s/
√
n− 1

is distributed according to Student’s distribution (see equation (76)), which only
depends on the number of degrees of freedom. Hence, for any given value of γ,
one can use the tables of Student’s distribution to find a value tγ such, that

P{|t| < tγ} = P{−tγ < t < tγ} = γ.

. Remembering that t = ξ−m
s/

√
n−1

, one has

P

{

ξ − tγ
s√

n− 1
< m < ξ + tγ

s√
n− 1

}

= γ. (111)
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If we use the unbiased estimator for the dispersion of the sample mean, s2 =
n

n−1
s2, then we obtain the following expression for the confidence interval for the

expectation value m at the γ −% confidence level:
(

ξ − tγ
s√
n
, ξ + tγ

s√
n

)

(112)

where tγ is the number obtained from the tables of Student’s distribution, defined
by

γ =

∫ tγ

−tγ

ρ(t) dt. (113)

As a practical example, consider the following problem: the working life of
diodes manufactured in a particular factory is described by the normal distribu-
tion. On a sample of 16 diodes it was found that mean life ξ is equal to 3000 hours,

with sample standard deviation
√

s2 = 20 hours. Based on these numbers, let’s
estimate the 90% C.L. for the mean life of the diodes.

Solution: here the sample volume n = 16, the number of degrees of freedom for
the Student’s distribution is k = n−1 = 15, and γ = 0.9. Based on equation (113)
we find from the table of the Student’s distribution that tγ = 1.753. Hence, using
equation (112), we get

(3000− 1.753
20√
16

, 3000 + 1.753
20√
16

) = (2991.235, 3008.765).

For a 95% C.L. interval we would get a wider range, 2989.35, 3010.65. If a larger
sample of diodes had been used (24 instead of the original 16), then for the 90%
C.L. one would get a narrower interval, 2993.015, 3006.985.

Finally, let us state another important equation, which allows to estimate the
probability that a random variable ξ deviates from its expectation value m = Mξ
by more than a given value ε > 0, provided the dispersion of ξ is finite. This
probability is obtained from Chebyshev’s inequality:

P{|ξ −m| ≥ ε} ≤ Dξ

ε2
(114)

we can see that this probability is smaller if the dispersion is small. Inequal-
ity (114) is very important for the probability theory. In particular, it can be
used to prove Chebyshev’s theorem.

6 Monte Carlo method

6.1 The general overview

The Monte Carlo method is a universal numerical method that can be used to
calculate any quantity which cannot be calculated analytically. Although the
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theoretical foundations of the method were established long time ago, it started
to be widely used only after the proliferation of electronic computers. The method
was pioneered by American scientists John von Neumann and Stan Ulam, who
started using computers to solve probability-related problems in the process of
designing nuclear reactors.

One of the main tasks of the Monte Carlo method is to estimate various
parameters of a system by presenting the system as some kind of a random
probabilistic model and determine those parameters from series of experiments
on the model. Often the parameter in question is an expectation value of some
variable and its dispersion. This process is sometimes called statistical modelling,
with Kolmogorov’s law of large numbers (equation (103)) at its foundation.

Suppose we need to calculate a scalar number m. Based on the law of large
numbers and the central limit theorem, the value of m can be estimated by
finding a random variable ξ whose expectation value Mξ = m, and the dispersion
Dξ = b2 is finite (in case of infinite dispersion a variable transformation is used,
such that the dispersion becomes finite without changing the mean). Consider
N independent random variables ξ1, ξ2, . . . , ξN which have the same distribution
as ξ. If N is large enough then, according to the central limit theorem, the
distribution of the sum ζ = ξ1 + ξ2 + · · ·+ ξN will be approximately described by
a Gaussian with the mean a = Nm and width σ = b

√
N , where σ =

√
D.

Remember now the property of the Gaussian distribution (equation (73)) that
it is almost totally concentrated within the interval (a− 3σ, a+ 3σ):

P{Nm− 3b
√
N < ζ < Nm+ 3b

√
N} ≈ 0.997,

hence

P

{

m− 3b√
N

<
ζ

N
<

m+ 3b√
N

}

≈ 0.997.

The last inequality can be rewritten like this:

P

{∣

∣

∣

∣

∣

1

N

N
∑

i=1

ξi −m

∣

∣

∣

∣

∣

<
3b√
N

}

≈ 0.997. (115)

Equation (115) is one of the most important for the Monte Carlo method,
since it provides the method of calculating m (as the average of values ξi) as well
as its uncertainty (as σ = b/

√
N). Note here, that in order to calculate σ one

can use the formula for sample dispersion, equation (107).
In practice, instead of the upper limit of the uncertainty 3b/

√
N given by

equation (115), one often uses the ‘probable error’ calculated as 0.6745 · b/
√
N .

These formulae also illustrate the weakness of the Monte Carlo method: slow con-
vergence. If you want to improve your estimate of m by reducing its uncertainty
by a factor of 10, you need to increase the statistics N by a factor of 102 = 100.
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We said that equation (115) allows the estimation of the quantity m, however
it does not specify how to choose the distribution of the random variable ξ, as
there are many random variables of various distributions which have the same
mean m. Practical guidance on the best choice of the distribution ξ is given in
manuals on Monte Carlo method. Our general advice here would be to choose
a variable with smallest dispersion D, as the uncertainty in m is proportional
to

√
D.

Consider a simple example, which would help understand the essence of the
Monte Carlo method. Let’s try to calculate the area of a flat shape with of an
arbitrary shape. One such shape, which fits within the square of unit area, is
shown in Figure 16. Let’s put N random points into the unit square. These

Figure 16: Left: calculating the area of a figure using the Monte Carlo method.
Middle: the positioning of two parallel lines and a needle in Buffon’s problem.
Right: occurrence A – the condition that the line is crossed – in Buffon’s problem.

could be generated by an amateur shooter from far away, if the picture is used
as a target. Let the number of points that hit the square inside the shape is
n. Then n/N is the area of the shape (relative to the unit area of the square
itself). The higher is the number N , the more precise is our estimate, but it is
crucially important that the distribution of points is uniformly random over the
square. The amateur shooter from far away may not be the best solution here,
it’s probably better to use a computer to generate uniformly distributed random
numbers. Each point will require 2 such numbers as its x and y coordinates. In
Figure 16 (left) there are N = 40 points, out of which n = 12 fell inside the
shape. Hence our estimate of the area of the shape is s = 12/40 = 0.3, with the
true area being 0.35. By taking a significantly larger number of tries N , one can
greatly improve the precision of the calculation, down to the level of 0.1% or even
better.

In 1977 a French scientist Buffon used statistically independent tries to cal-
culate the number π with great precision. The analysis of this problem will help
understand the essence of the Monte Carlo approach even better.

54



Draw two parallel lines on a plane: x = 0 and x = d. Suppose that a needle
of length l ≤ d is thrown randomly onto the plane. What is the probability that
the needle will cross at least one of the lines?

After each throw, the position of the needle on the plane can be characterised
by two numbers: the x-coordinate of one of its ends h and the angle φ relative
to x axis. Clearly, h and φ are random variables, uniformly distributed in their
respective intervals, x ∈ [0, d] and φ ∈ [−fracπ2, π

2
]. Consider occurrence A –

the needle crosses one of the lines:

A = {(x, φ) : h+ l · cos(φ) > d}

The geometric interpretation of this occurrence is shown in Figure 16 (right),
where the shaded area covers the parameter space where the condition is satisfied
and hence the occurrence A takes place. Let’s denote the shaded area by S+.
Clearly, the whole rectangle has the area S = πd. The difference between these
two is has the area S− which can be calculated through the double integral

S− =

∫ π
2

−π
2

dφ

∫ d−l cosφ

0

dh =

∫ π
2

−π
2

(d− l cosφ) dφ = πd− 2l.

Hence, the probability in question is

P (A) =
S+

S
=

S+

S+ + S− = 1− S−

S+ + S− = 1− S−

S
= 1− πd− 2l

πd
=

2l

πd

Suppose the needle was dropped on the plane N times, and every time it was
recorded whether the occurrence A took place or not. Clearly, these attempts
are mutually independent. Consider the random variable

ξi =

{

1 0
A A

}

and calculate SN =
∑N

i=1 ξi. Then the random variable
{

SN

N
∈ { 0

N
, 1
N
, . . . , N

N

}

has the binomial distribution with the following properties:

P{ξi = 1} = p =
2l

πd

P{ξi = 0} = q = 1− p =
πd− 2l

πd
P{SN

N
= m

N
} = Cm

N pmqN−m

The quantity SN

N
can be considered as an estimate of the probability p of the

occurrence A. It can be used to obtain an estimate of the value of π through the
following calculation:

π̂ =
2l

SNd
N
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Let’s find out how good this estimate is. The expectation value

M

(

SN

N

)

= M

(

∑N
i=1 ξi
N

)

=
1

N
M

(

N
∑

i=1

ξi

)

=
1

N

N
∑

i=1

M (ξi)

=
1

N

N
∑

i=1

(1 · p− 0 · 1) = p

is a consistent and unbiased estimate of the probability p. As for the dispersion,
we have

D

(

SN

N

)

=
p · q
N

=

(

2l
πd

) (

1− 2l
πd

)

N
.

The minimum of this expression, under the constraint l ≤ d, is achieved at
l = d. In this case, M

(

SN

N

)

= 2
π
, hence π̂ = 2N

SN
, with the dispersion D

(

SN

N

)

=
2

πN

(

1− 2
π

)

.

6.2 Pseudorandom numbers and random number gener-
ators

How can we obtain random numbers? One of the simplest ‘generators’ of random
numbers can be built like this: take a cubic dice with numbers 0,1,2,3,4 embedded
on the sides (with the sixth side left blank), and a coin with numbers 0 and 5
embedded on its two faces. Throw the dice and the coin simultaneously, and write
down the sum of the resulting numbers. The result will be a random number from
0 to 9, which could be used to create tables of multi-digit random numbers (with
0 allowed to take any position).

Assume we have used this method to create a list of 300 4-digit random
numbers, and let’s find out how random the resulting numbers are:

1. What is the frequency of each digit (0 to 9) in the list? Clearly, it should
be close to 0.1, which is the probability of getting one of 10 digits in each
try.

2. What is the frequency of getting each digit in the first, second, third and
fourth place? These frequencies should also be close to 0.1, but the devi-
ation can be larger than for the first case, because the statistics of 300 is
smaller than the 1200 entries above.

One can use an electronic device, such as a diode or a triode, as a random
number generator, because their output is not exactly constant even in a sta-
tionary situation. Thermal (and other random) processes are causing the output
voltage to fluctuate around the nominal value. Count the number of times n
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when the output was higher than the nominal, and if n is odd, assume the ran-
dom number to be 1, while for n even assume it to be 0. This will give a single
random binary digit. If the mean is not close to 0.5, then one can use the follow-
ing way to stabilise the output: group the random digits into pairs, and assume
the output to be 1 for 01 and 0 for 10, while 00 and 11 are simply ignored. This
way, the mean should be closer to 0.5. The weakness of this method is that the
output is hard to control, because the physical device can change its pattern and
the randomness of the output is diminished.

In practice, so called pseudorandom (rather than truly random) numbers are
used, which are obtained by some kind of recurrence relationship that imitates
a random process. The first such algorithm, sometimes called the middle-square

method, was suggested by von Neumann. It works like this: choose a 4-digit
number n0, say n0 = 9876. Calculate its square n2

0 = 97535376 and select 4
middle digits n1 = 5353. Then do the same with n1 to obtain n2: n

2
1 = 42850116,

n2 = 8501 and so on. To get random numbers in the interval (0, 1), divide the
result by 10000 to obtain the sequence 0.9876, 0.5353, 0.8501, . . . . Unfortunately,
the method did not work very well, giving far too many small numbers.

Better results were obtained using residuals. Let’s assume our computer has
a 32-bit processor. In order to obtain a sequence of random numbers within the
interval (0, 1), one can use the following recurrence relation:

m0 = 1, g = 513, mk+1 = g ·mk(mod231). (116)

I.e the next member of the sequence, mk+1, is obtained from the previous one, mk:
divide the product g ·mk by 231 and take the residual to be mk+1. The sequence
of 31-bit-long numbers mk, can be transformed into the set of pseudorandom
numbers in the interval [0.1] by the operation γk = 2−31 · mk. The first 100
numbers in this sequence do not look uniformly distributed, but after k ∼ 500
this algorithm gives satisfactory results.

When using pseudorandom numbers, one should remember that sooner or
later the sequence produce a number which was produced before. Then the
sequence will start repeating itself, and hence is not random any more. Thus, any
pseudorandom number generator has a period, which is equal to the maximum
length of the sequence of random numbers it can produce. The period L of our
last algorithm (equation (116)) is L = 229.

The period can be made longer if the number of bits is increased. For example,
with a 42-bit ‘word’, the algorithm (116) can be improved like this:

m0 = 1, g = 517, mk+1 = g ·mk(mod240), (117)

followed by γk = 2−40 ·mk. The period of this sequence is L = 238. This algorithm
was developed by Lehmer. Since then, algorithms with much longer periods have
been developed. The longest so far belongs to the Mersenne twister algorithm,
with L = 219937 − 1.
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6.3 Calculating definite integrals using Monte Carlo method

Let’s use Monte Carlo method to estimate the integral

I =

∫ b

a

g(x) dx. (118)

Choose a random variable ξ defined in the interval (a, b), with any probability
density ρ(x) = ρξ(x) which satisfies the usual conditions

ρ(x) > 0 (119)
∫ b

a

ρ(x) dx = 1. (120)

In addition to the variable ξ we will need another random variable with the
distribution η = g(ξ)/ρ(ξ). Using equation (47), we can write:

Mη =

∫ b

a

η(x)ρ(x) dx =

∫ b

a

g(x)

ρ(x)
ρ(x) dx =

∫ b

a

g(x) dx = I.

Now consider N identical independent random variables η1, η2, . . . , ηN and apply
the central limit theorem to their sum. Then equation (115) takes the form:

P

{∣

∣

∣

∣

∣

1

N

N
∑

i=1

ηi − I

∣

∣

∣

∣

∣

< 3

√

Dη

N

}

≈ 0.997. (121)

This equation means that if we choose N random variables ξ1, ξ2, . . . , ξN , then
for large N an approximate value of the integral I is given by

I ≈ 1

N

N
∑

i=1

g(ξi)

ρ(ξi)
(122)

According to equation (121), the uncertainty of the result given by this equation
almost never exceeds 3

√

(Dη/N). Let’s calculate the dispersion Dη:

Dη = Mη2 − I2 =

∫ b

a

g2(x)

ρ(x)
dx− I2. (123)

Next we will show that the dispersion is minimal if ρ(x) is proportional to g(x).
The following inequality is known from calculus:

(
∫ b

a

|u(x)v(x)| dx
)2

≤
∫ b

a

u2(x) dx

∫ b

a

v2(x) dx. (124)
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Denoting u(x) ≡ g(x)/
√

ρ(x) and v(x) ≡
√

ρ(x), we can write using equa-
tion (120):

(
∫ b

a

|u(x)v(x)| dx
)2 (∫ b

a

|g(x)| dx
)2

≤
∫ b

a

g2(x)

ρ(x)
dx

∫ b

a

ρ(x) dx =

∫ b

a

g2(x)

ρ(x)
dx. (125)

So combining equations (123) and (125) we now have

Dη ≥
(
∫ b

a

|g(x)| dx
)2

− I2. (126)

Let’s show that the dispersion is minimised for ρ(x) = c|g(x)|. Firstly, from the
normalisation condition (34) we have:

c =

(
∫ b

a

|g(x)| dx
)−1

Then, the integral in the r.h.s. of equation (123) becomes

∫ b

a

g2(x)

ρ(x)
dx =

1

c

∫ b

a

|g(x)| dx =

(
∫ b

a

|g(x)| dx
)2

.

I.e. when ρ(x) is proportional to g(x), the r.h.s. of equation (123) is equal to the
r.h.s. of equation (126), which minimises the dispersion (123).

In practice it is not recommended to choose a very complicated distribution
ρ(x), because it will take a long time to generate the values of ξ. In general, Monte
Carlo methods are not very efficient for single integrals: conventional numerical
integration methods are far more efficient. However, the Monte Carlo method is
more efficient than any other known method, and sometimes is the only method,
when dealing with multiple integrals.

We will now present a practical example of calculating the integral

I =

∫ π/2

0

sin x dx = 1

using Monte Carlo method, for two different distribution functions (see Fig-
ure 17).

First, we will use a constant distribution function ρ(x) = 2/π. In this case,
using equation (85), we have ξ = 0 + (π

2
− 0) · γ = π

2
γ and hence

I ≈ π

2N

N
∑

j=1

sin ξj,
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Figure 17: Illustration to the procedure of integration using Monte Carlo method.

where γ is the random variable uniformly distributed in the interval [0, 1]. N = 10
values of γ have been sampled and used to calculate ξj and corresponding sin ξj.
The numbers are presented in Figure 18 (top table). The resulting value of the
integral is I ≈ 0.952.

In the second case, we choose ρ(x) = 8x
π2 . Then, from equation (83)

∫ ξ

0

8x

π2
dx = γ ⇒ ξ =

π

2

√
γ.

So, from the equation (122) we now have

I ≈ π2

8N

N
∑

j=1

sin ξj
ξj

.

The results are shown in Figure 18 (bottom table). The value of the integral in
this case is I ≈ 1.016, which is noticeably closer to the true value, than the first
estimate.

From the tables shown in Figure 18 one can estimate the respective disper-
sions:

Dξ ≈ π2

9 · 4





10
∑

j=1

(sin ξj)
2 − 1

10

(

10
∑

j=1

sin ξj

)2


 = 0.256,

Dξ ≈ π4

9 · 64





10
∑

j=1

(

sin ξj
ξj

)2

− 1

10

(

10
∑

j=1

sin ξj
ξj

)2


 = 0.016.
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Figure 18: Results of the Monte Carlo integration with 10 points using two
different distribution functions.

(the true values of the dispersions are 0.233 and 0.0166, respectively). So, even
with a very modest number of points, N = 10, both methods of integration gave
reasonably acceptable results. However, the second method is clearly preferable,
giving a much smaller dispersion. As seen from Figure 17, the probability density
chosen for the second method is much closer to the integrand, and hence is
closer to satisfying the condition ρ(x) = c|g(x)| and minimising the dispersion,
as expected.

7 Modelling the propagation of neutrons through

matter

Suppose a beam of monoenergetic neutrons with initial energy E0 is normally
incident onto an infinite and uniform plate of thickness h. Suppose also that only
two processes are allowed when the neutrons interact with the atoms in the plate:
the absorption of neutrons by the atom and the elastic scattering of neutrons,
which is assumed to be isotropic. The latter assumption is often valid if the plate
is formed by atoms with heavy nuclei. Yet another simplifying assumption is
that the nuclei in the plate do not disintegrate as the result of the collision with

61



the neutrons. Out task is to obtain the probabilities of reflection, absorption and
penetration in the framework of this simplified model.

Let the cross section of neutron absorption (capture) by the nuclei be σc

and the cross section of the elastic scattering be σs. the total cross section will
thus be σ = σc + σs. The physical meaning of the cross section is related to
the probability of the process taking place, so σc/σ and σs/σ are capture and
scattering probabilities in the event of the neutron interaction with a nucleus in
the plate. The distance λ travelled by the neutron between two collisions is a
random variable which is often called the free path length. This variable can take
any arbitrary positive value with the distribution

ρ(x) = σe−σx (127)

where x ∈ [0, h]. For the mean free path length we then get

Mλ =

∫ ∞

0

xρ(x) dx =

∫ ∞

0

xσe−σx dx =
1

σ
, (128)

which clarifies the physical meaning of the parameter λ: it is inversely propor-
tional to the total cross section. The bigger is the cross section, the shorter is
the mean free path of the neutron in matter. In general, the cross section (and
hence λ) depends on the initial energy of the neutron E0.

For modelling neutron propagation it is enough to sample the free path length
λ and the direction of the neutron after scattering. To generate λ with the correct
distribution, use equation (83):

∫ λ

0

σe−σx dx = r, ⇒ λ = − 1

σ
ln(1− r),

where r is a uniformly distributed random variable in the interval [0, 1]. Of course,
(1− r) has the same distribution as r, so finally for λ we get:

λ = − 1

σ
ln r, (129)

The scattering process is assumed to be isotropic. Direct the x axis along
the incident neutrons and let θ ∈ (0, π) be the angle between the velocity of the
neutron after scattering and the x axis. The isotropy of the scattering process
means that the quantity µ = cos θ is distributed uniformly in the interval (−1, 1),
so µ can be generated simply as 2r − 1 which has the right distribution.

Let’s now develop the algorithm of the simulation. The starting point is
x = 0, µ = 1, i.e. the neutrons are hitting the plate normally. Assume that the k-
th act of scattering inside the plate happens at depth xk, after which the neutron
moves in the direction µk. Generate the free path length λk = −(1/σ) ln r and
find the depth of the next point of scattering:

xk+1 = xk + λk · µk. (130)
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If the resulting value xk+1 > h then the neutron has penetrated the plate and
the number of neutrons that went through the plate has to be increased by 1.
If xk+1 < h then the neutron was reflected back from the plate, and hence the
number of reflected neutrons has to be increased by 1. In both of these cases this
would be the end of the simulation process for this neutron. For the remaining
values of x, i.e. 0 < xk+1 < h the neutron remains inside the plate, and another
step of the simulation needs to be performed. In particular, the neutron capture
hypothesis needs to be checked: generate r and if r < σc/σ then the simulation for
this neutron is over, the neutron is captured, and hence the number of captured
neutrons has to be increased by 1. In the opposite case, the neutron is scattered,
and another step has to be performed: new values of λ and µ are generated, and
the cycle is repeated.

Figure 19 illustrates possible fates of the neutron, such as penetration of the

Figure 19: Three types of trajectories of a neutron hitting a solid plate.

plate (a), capture within the plate (b) and reflection from the plane (c). Suppose
the total number of neutrons is N , out of which N+ neutrons have one through,
N− were captured andN0 were reflected. Then we get for respective probabilities:

p1 =
N+

N
, p1 =

N−

N
, p1 =

N0

N
, (131)

and the problem is solved. A diagram illustrating the algorithm is shown in
Figure 20, where the index j labels the trajectory of the neutron, while the index
k goes over the collisions along a particular trajectory.
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Figure 20: The diagram illustrating the algorithm of neutron simulation. The
cross sections are denoted by Σ, while γ is the random variable distributed uni-
formly in [0, 1].
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8 Modelling methods of analysing experimental

distributions

Physical processes taking place in Nature obey certain regularities, and the pur-
pose of experimental studies is to discover or confirm these regularities. Limiting
(asymptotic) distributions – distributions obtained in the limit of infinite number
of measurements – are expected to be described by certain functions. However,
the limiting distributions are our of practical reach, so the question is, how can
we determine whether the results of a particular experiment obey the expected

limiting distribution?
Here we only consider the case when the distribution law governing a particu-

lar experiment is known, however some of the parameters need to be determined.
For example, we know that a radioactive decay obeys the exponential law, but we
need to measure the mean life of this particular isotope, which in fact determines
the nature of the decay.

Two methods of parameter estimation are described here: the method of
maximum likelihood, and the method of least squares.

Before we start explaining these methods, let us familiarise ourselves with the
way of presenting experimental data which is called a histogram. Suppose we
have measured a quantity A which varies within the interval (a, b). Let’s divide
the interval into N subintervals (which, by the way, do not have to be equal), and
calculate the frequencies of the quantity A falling within each subinterval (these
subintervals are usually called bins). Let’s plot the subinterval boundaries along
the x axis, and draw the frequencies in each bin as the rectangles of appropriate
height in the y dimension. So the experimental data are presented as a stepwise
graph which consists of N rectangles with the bases equal to the bin widths, and
heights proportional to the frequencies in the respective bins, like the one shown
in Figure 21 (a). Sometimes the rectangles in the y direction are replaced by
markers in the shape of a cross, with the horizontal bar (placed at the hight of the
rectangle) showing the bin width and the vertical bar indicating the uncertainty
of the measurement. If the range of frequencies in the y axis is too large, it is
visually more appropriate to use the logarithmic scale on that axis (Figure 21 (c)).
An example of a two-dimensional histogram is shown in Figure 21 (d).

Note the fact that the probability of an event ending up in a particular bin
does not depend on whether the previous event fell in the same bin or not. The
probability of falling in a bin is proportional to the width of that particular bin,
and the probability of two events in a row falling into the same bin is a small
number of a higher order. From the properties of the Poisson distribution (see
subsection 4.2), it is clear that the number of entries in a bin is described by
the Poisson distribution. If there are N entries in a bin, then the dispersion in
that bin is also equal to N . Hence the statistical uncertainty on the number N
is σ = ∆N =

√
D =

√
N . This is an important property of a histogram.
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Figure 21: Examples of one-dimensional (a,b.c) and two-dimensional (d) his-
tograms. Histogram (a) also shows the mean and σ of the distribution. Histogram
(c) has a logarithmic scale on the y axis. In the two-dimensional histogram (d),
a high concentration of dots indicates a larger number of entries in the respective
bins. The distributions describe the process of the deuteron dissociation in the
reaction pd → ppn with the proton beam energy of 49 MeV.
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8.1 Method of maximum likelihood

Suppose a quantity is measured n times, with results x1, x2, . . . , xn. The distribu-
tion of the quantity is known to have the density ρ(x; a) where a is an unknown
parameter to be determined from the measurements. Since the measurement
is a random process, the link between the value of a and the measurements
x1, x2, . . . , xn can only be established through the probability of observing this
particular set of measurements. The latter can be calculated as the product
ρ(x1, x2, . . . , xn; a)∆x1∆x2 . . .∆xn, where ρ(x1, x2, . . . , xn; a) is the probability
density for n consecutive measurements xi and ∆xi are the respective bin widths.
If the measurements are independent – which is the case when the same quantity
x is measured in the same conditions – then one has

ρ(x1, x2, . . . , xn; a) = ρ(x1; a)ρ(x2; a) . . . ρ(xn; a) (132)

The above discussion is also valid in the case where the measured quantity is
discrete and the results of the measurements are v1, v2, . . . , vn. In this case
ρ(v1, v2, . . . , vn; a) is the probability of measuring n consecutive values of vari-
able v.

Let’s define a functional L(x1, x2, . . . , xn;α) with the following properties:

1. It coincides with ρ(x1, x2, . . . , xn; a) when α = a, and hence contains the
full information about the measurements and their distribution law.

2. For any value of α the unitarity condition is met:

∫

dx1

∫

dx2 . . .

∫

dxn L(x1, x2, . . . , xn; a) = 1 (133)

where the integration is performed over all possible xi.

It can be shown that the best estimate of a is the value of α for which the
functional L(x1, x2, . . . , xn;α) reaches its maximum. The functional L is called
the likelihood, and hence this method of parameter estimation carries the name
of maximum likelihood method.

In order to find the maximum of L we need to differentiate L with respect
to α and equate the derivative to zero. Since lnL has the maxima at the same
values of α as L, usually the following equation is solved:

∂

∂α
lnL = 0. (134)

Then, taking into account equation (132), one has:

∂

∂α
ln

n
∏

i=1

ρ(xi;α) = 0 ⇒ ∂

∂α

n
∑

i=1

ln ρ(xi;α) = 0. (135)
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Equation (135) explains the reason for introducing the logarithm into equa-
tion (134), as minimisation of the sum is much easier than minimisation of the
product.

If the probability density ρ depends on 2 parameters, then equations (132)
and (134) should be modified accordingly:

L(x1, x2, . . . ;α1, α2) = ρ(x1;α1, α2)ρ(x2;α1, α2) . . . ,

∂

∂α1

lnL = 0 and
∂

∂α2

lnL = 0. (136)

Generalising the method further for the case of k parameters αk should not be a
problem.

In many cases it is not possible to find an analytic solution to equations (132)
and (136). In these circumstances one can try using a different probability density
function ρ, or solve the maximisation problem numerically.

To illustrate the use of the maximum likelihood method, consider an experi-
ment that counts the number of particles registered by a detector. Suppose that
N particles were detected during a time period t. The average number of particles
per unit time, i.e. the average rate of particle detection ν, can then be calculated
as

ν =
N

t
.

Suppose now that the whole time interval t was divided into n subintervals
t1, t2, . . . , tn and the numbers of detected particles within each subinterval was
N1, N2, . . . , Nn, respectively. We know that in the counting experiments of this
type, the number of detected particles obeys the Poisson distribution (see equa-
tion (68)):

ρ(Ni, α) =
(αti)

Ni

Ni!
e−αti .

Our task is to estimate the best value for parameter α. The likelihood function
is constructed like this:

L(α) =
(αt1)

N1

N1!
e−αt1

(αt2)
N2

N2!
e−αt2 . . .

(αtn)
Nn

Nn!
e−αtn

= C · α
∑

Ni · e−α
∑

ti . (137)

where C is a constant. Then

lnL(α) = ln(C · α
∑

Ni · e−α
∑

ti) = lnC +
∑

Ni lnα− α
∑

ti.

Equating this to zero and solving for α we get

∂

∂α
lnL =

1

α

∑

Ni −
∑

ti = 0,

α =

∑

Ni
∑

ti
=

N

t
= ν,
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which coincides with the expected result.

8.2 Method of least squares

Suppose that n measurements of a physical quantity were made with results
Ei ± ∆Ei, i = 1, 2, . . . , n. A theoretical model predicts that the measurements
should be equal to the values Ti. It appears that, in the absence of systematic
uncertainties, results of multiple measurements of each Ei are distributed nor-
mally with the expectation value Ti (if the theory is correct) and the standard
deviation ∆Ei. In these conditions, the quantity

χ2(p1, . . . , pk) =
n

∑

i=1

[Ei − Ti(p1, . . . , pk)]
2

∆E2
i

(138)

is a sum of n normally-distributed random variables, and hence should obey the
χ2 distribution with n degrees of freedom. On the other hand, if the parameters of
the theoretical model p1, . . . , pk are seen as free parameters, one can choose their
values in such a way that the quantity (138) is minimised. The main purpose of
this exercise is the estimation of these parameters, and this method is called the
method of least squares, developed first by Legendre. The essence of the method is
the following: given are the experimental measurements and their uncertainties,
and a theoretical model which is supposed to describe the experimental points,
but the values of the parameters of the model are unknown. Similarly to the
maximum likelihood method, the least square method can be used to estimate
the values of these parameters. The functional defined by equation (138) contains
all the information about the experimental data as well as the theoretical model,
and can be used for this purpose. Obviously, the smaller is the value of the
functional (138), the closer is the theory to the experimental data. Naively one
may expect that the ideal value for the minimum of χ2 is zero. However the
expectation value of the χ2 distribution with n degrees of freedom is n, hence
the ‘best’ value for the minimum of χ2 is 1 per degree of freedom. For the set
of n experimental points and k theoretical parameters, the number of degrees of
freedom is n − k. Figure 22 shows the dependence of the confidence level (CL)
on χ2 for various numbers of degrees of freedom.

The general scheme of the process of minimisation of the functional (138) goes
like this: take the derivative of the functional with respect to each parameter,
and require it to be equal to zero. This yields k equations (as many as there are
parameters) to be solved simultaneously to find the values of the parameters, as
well as their uncertainties (see below). If the parameters enter the theoretical
model linearly, then the simultaneous system of equations is linear with respect
to parameters and can be solved either analytically, or using standard methods
for such systems. However, in most cases it is practically advisable to use special
computer programs to minimise the functional. A package called ‘Minuit’ is a
good example of such programs.
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Figure 22: The confidence level (CL) as a function of χ2 for n degrees of freedom.

Let’s see how the method of least squares works on a simple example. Suppose
that there is a linear dependence between two variables x and y, and that the
uncertainty in x is negligibly small, while the uncertainty in y is independent of
y and is constant at σy. We would like to present the measurement points (xi, yi)
on a graph and try to determine the parameters a and b of a linear function
y = a + bx such that this function represents the best fit to the experimental
data.

We will use the least square method to achieve this. Each measured value
yi is expected to be normally distributed with the mean at the ‘true’ value (i.e.
the theoretical value Ti = a+ bxi) and with width σy, so that the probability of
measuring some value yi is given by

ρa,b(yi) ∼
1

σy

exp

[

−1

2

(

yi − a− bxi

σy

)2
]

. (139)

The probability (139) clearly depends on parameters a and b. Since the measure-
ments yi are independent, the probability of measuring n values y1, y2, . . . , yn is
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the product of ρa,b(yi):

ρa,b(y1, y2, . . . , yn) ∼
1

σn
y

exp

(

−χ2

2

)

, (140)

where

χ2 =
n

∑

i=1

(yi − a− bxi)
2

σ2
y

. (141)

Equation (141) is the specific case of equation (138), and hence represents the χ2

distribution (see subsection 4.5).
We can now proceed to finding the minimum of the functional (141, which

would correspond to the maximum of (140. At minimum the derivatives of (141)
with respect to parameters a and b should be equal to zero:

∂χ2

∂a
= − 2

σ2
y

n
∑

i=1

(yi − a− bxi) = 0

∂χ2

∂b
= − 2

σ2
y

n
∑

i=1

xi(yi − a− bxi) = 0 (142)

The equations (142) can be rearranged to form the simultaneous system

a · n+ b
∑

xi =
∑

yi

a
∑

xi + b
∑

x2
i =

∑

xiyi (143)

which has the following solution:

a =
(
∑

x2
i ) (

∑

yi)− (
∑

xi) (
∑

xiyi)

∆
, (144)

b =
n (

∑

xiyi)− (
∑

xi) (
∑

yi)

∆
, (145)

where ∆ ≡ n (
∑

x2
i ) − (

∑

xi)
2. Equations (144) and (145) represent the best

values for the parameters of the straight line y = a+bx describing the data points
(xi, yi).

Once the best values of the parameters are found, the next task is to assess the
uncertainties of these values. The problem is that the spread of the experimental
data cannot be directly used for this purpose, because the measurements yi are
not independent measurements of the same quantity, but change from point to
point depending on xi (for example, if hi correspond to the heights of a body in
freefall measured at different times ti and our aim is to check the validity of the
formula h = gt2/2, then the distribution of values hi carries little information on

71



the uncertainty in height measurement). On the other hand, we know that yi
are expected to be normally distributed around the ‘true’ value predicted by the
theory, a+bxi, with the width equal to σy. Hence, the values of yi−a−bxi belong
to a Gaussian distribution with zero mean and the same width σy. Consider the
quantity

σ2
y =

1

n− 2

n
∑

i=1

(yi − a− bxi)
2. (146)

According to the central limit theorem this expression can be used to find a
corrected estimate of σy. Based on the maximum likelihood method it can be
shown that the quantity (146) gives the best possible estimate of σy, which is
consistent and unbiased. Indeed, by differentiating equation (140) with respect
to σy we get

∂ρ

∂σ
=

e−χ2/2

σn+3

[

∑

(yi − a− bxi)
2 − nσ2

]

= 0, (147)

which leads to equation (146), albeit with the factor 1
n
instead of 1

n−2
. This

difference is due to the fact that the parameters a and b were calculated from
the measured values yi using equations (144) and (145). As a consequence, the
measured values of yi are not independent any more, and the number of degrees
of freedom is reduced by the number of parameters, 2. At high n the difference
between n and n − 2 is not that noticeable, but at smaller n the correct factor
1/(n − 2) should be used for an unbiased estimate of σy. In the extreme case
n = 2 there are just two points and it is always possible to put a straight line
through these points without any approximation, hence no judgement can be
made about the fit quality. In this case equation (146) gives an indeterminate
answer 0/0, while equation (147) would have given 0/2 = 0, which is incorrect.

After this deliberation, we are ready to estimate the errors on the parameters a
and b. These can be obtained using equations (152) and (153) from the following
subsection, where the propagation of uncertainties in indirect measurements is
discussed. We get

σ2
a = σ2

y

∑

x2
i

∆
,

σ2
b = σ2

y

n

∆
. (148)

Thus, we solved our problem. We have found the values of parameters that
produced the best linear approximation to the data points, and we also estimated
the uncertainties in those values.

The method can be easily extended to the case when each measurement yi
has a different uncertainty σi. In this case it is convenient to introduce at each
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point a weight wi = 1/σ2
i , and rewrite the equations (144) and (145) like this:

a =
(
∑

wix
2
i ) (

∑

wiyi)− (
∑

wixi) (
∑

wixiyi)

∆
, (149)

b =
(
∑

wi) (
∑

wixiyi)− (
∑

wixi) (
∑

wiyi)

∆
, (150)

where ∆ = (
∑

wi) (
∑

wix
2
i )− (

∑

wixi)
2.

8.3 Propagation of uncertainties in indirect measurements

In physics it is often necessary to calculate the value of a physical quantity based
on other variables which have been measured with certain precision. How can
we assess the uncertainty in such calculations? For simplicity let’s start with a
simple case where we have two independent measured variables X and Y and we
want to calculate the sum Q = X + Y and its uncertainty.

Remembering equation (74) which defines the probable error, let’s write the
results of the measurements of X and Y as x± δx and y± δy, where x and y are
the measured values and δx and δy are their respective probable errors. Clearly,
the largest probable value for X + Y is (x+ δx) + (y+ δy) = (x+ y) + (δx+ δy),
while the smallest probable value is (x − δx) + (y − δy) = (x + y) − (δx + δy).
Based on these results one could say that the best estimate for the sum would be
q = x+ y, with estimated error δq = δx+ δy. However, it is more-or-less obvious
that this estimate for the error is incorrect, because its maximum is reached
when both x and y errors are at maximum, which is quite improbable. In order
to obtain a better estimate let’s remind ourselves that any measurement which
does not contain systematics is expected to be distributed as a Gaussian around
the true value. So assuming for simplicity that the true values for X and Y are

both 0, the measured values x and y will be distributed as ρ(x) = exp
(

− x2

2σ2
x

)

and ρ(y) = exp
(

− y2

2σ2
y

)

, respectively. Since X and Y are independent, one has

ρ(x, y) = ρ(x)ρ(y) = exp

(

− x2

2σ2
x

)

exp

(

− y2

2σ2
y

)

= exp

(

− x2

2σ2
x

− y2

2σ2
y

)

= exp

(

− x2 + y2

2(σ2
x + σ2

y)

)

exp

(

−z2

2

)

≡ ρ(x+ y, z)

where we used the identity

x2

A
+

y2

B
=

(x+ y)2

A+B
+

(Bx− Ay)2

AB(A+B)
=

(x+ y)2

A+ B
+ z2

The term containing z is irrelevant since it integrates into a constant coefficient√
2π, so we finally get

ρ(x+ y) ∼ exp

[

− x2 + y2

2(σ2
x + σ2

y)

]

.
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It is obvious from here that the width of the distribution of the sum x + y is
√

σ2
x + σ2

y , and the probable error can be linked to this quantity.
If the means of X and Y , denoted by x and y respectively, are not equal to

zero then one can write x+ y = (x− x) + (y− y) + (x+ y). Here the last term is
a constant which cannot change the width of the distribution, while the first two
terms are normally distributed with zero means and widths σx and σy, so for the
width of their sum we could use the formula

√

σ2
x + σ2

y .
Consider now a more general case where we would like to estimate the error on

a quantity which is an arbitrary function of two measured quantities: q = f(x, y).
Let’s assume that the mean q ≈ f(x, y) (which, strictly speaking, is not always
true, since in general M [f(ξ)] 6= f(Mξ)). Under this assumption we can use
equation (107) to obtain

σ2
q = lim

N→∞

1

N

N
∑

i=1

(qi − q)2.

For any given measurement xi the quantities xi − x and yi − y are expected to
be small numbers, one can expand qi− q into a series and only retain the leading
terms:

q − q = (xi − x)
∂f

∂x
+ (yi − y)

∂f

∂y
,

where the derivatives are calculated at the values x and y of the respective argu-
ments. Then

σ2
q = lim

N→∞

1

N

N
∑

i=1

[

(xi − x)
∂f

∂x
+ (yi − y)

∂f

∂y

]2

= lim
N→∞

1

N

N
∑

i=1

[

(xi − x)2
(

∂f

∂x

)2

+ (yi − y)2
(

∂f

∂y

)

+ 2(xi − x)(yi − y)
∂f

∂x

∂f

∂y

]

.

Now, taking into account that

σ2
x = lim

N→∞

1

N

N
∑

i=1

(xi − x)2,

σ2
y = lim

N→∞

1

N

N
∑

i=1

(yi − y)2,

σ2
xy = lim

N→∞

1

N

N
∑

i=1

(xi − x)(yi − y),

we finally have:

σ2
q = σ2

x

(

∂f

∂x

)2

+ σ2
y

(

∂f

∂y

)2

+ 2σ2
xy

(

∂f

∂x

)(

∂f

∂y

)

. (151)
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If the variables x and y are uncorrelated, then σxy = 0 and equation (151) is
simplified.

Let’s use equation (151) to calculate uncertainties for a sum and a difference
of uncorrelated variables:

q = (x+ y)− (u+ v),

δq =
√

(δx)2 + (δy)2 + (δu)2 + (δv)2. (152)

For a product and a ratio of uncorrelated variables we then have:

q =
x · y
u · v ,

δq

q
=

√

(

δx

x

)2

+

(

δy

y

)2

+

(

δu

u

)2

+

(

δv

v

)2

. (153)

In these equations δx etc. stand for the absolute uncertainty of the respective
variable (x in this case); then the expression δx

x
is the relative uncertainty. We

see that for a sum and/or a difference of variables their absolute uncertainties
are added in quadrature, while for products and/or ratios it’s the relative uncer-
tainties that are added in quadrature.

Suppose that u and v are two measured variables, while a and b are numbers.
Then, using equation (151), we can compile the following table:

x = au± bv σ2
x = a2σ2

u + b2σ2
v ± 2abσ2

uv

x = avu σ2
x = a2v2σ2

u + a2u2σ2
v + 2a2uvσ2

uv

x = ±a
u

v
σ2
x =

[

σ2
u

u2
+

σ2
v

v2
+ 2

σ2
uv

uv

]

x2

x = au±b σx = b
σu

u
x

x = a exp[±bu] σx = bσux

x = a ln[±bu] σx = a
σu

u
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8.4 Combining independent measurements

Suppose that the same quantity x is measured in two independent parts of an
experiment (or indeed in two independent experiments). How can we combine
these results?

Specifically, we have measured:

x = xA ± σA in experiment A;

x = xB ± σB in experiment B.

Note that this question only makes sense if the difference between the two mea-
surements |xA − xB| is not much larger than their respective uncertainties; if it
is, then something must be wrong and the combination does not make sense.

Assume that the measurements obey the Gaussian distribution, and denote
the combination byX. The probability that experiment A results in measurement
xA is

ρX(xA) ∼
1

σA

exp

[

−(X − xA)
2

2σ2
A

]

, (154)

and similarly for experiment B:

ρX(xB) ∼
1

σB

exp

[

−(X − xB)
2

2σ2
B

]

. (155)

The probabilities (154) and (155) depend on the combined value X which we are
trying to determine. The probability that experiment A results in measurement
xA and experiment B results in measurement xB is

ρX(xA, xB) ∼
1

σAσB

exp

(

−ξ2

2

)

, ξ2 ≡
(

xa −X

σA

)2

+

(

xb −X

σB

)2

. (156)

According to the principle of maximum likelihood, the best estimate x̂ for the
parameter X is the value which maximises this probability. This is achieved when
ξ2 is minimised. At the minimum, the derivative of ξ2 with respect to X must
be zero:

2
xA − x̂

σ2
A

+ 2
xB − x̂

σ2
B

= 0 ⇒ x̂ =
xAwA + xBwB

wa + wB

(157)

where wA = 1
σ2
A

, wB = 1
σ2
B

.

The result (157) can be easily generalised for N independent measurements:

x̂ =

∑N
i=1 wixi

∑N
i=1 wi

, wi =
1

σ2
i

. (158)
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Using the error propagation formula (151), one gets for the uncertainty in x̂:

σx̂ =

(

N
∑

i=1

wi

)− 1
2

. (159)

It is clear from equation (159) that the combination will be more precise than
any individual measurement in the set.

8.5 Interpretation of the measurement uncertainties

Any experiment in physics implies some kind of measurement of a physical quan-
tity or quantities. By its nature, the measurement is a random process, since
it is impossible to get exactly identical results, no matter how precise the mea-
surements are or how close are the conditions in each measurement. Hence,
uncertainties – deviations from the ‘exact true value’ – exist in any measure-
ment. Depending on the character of the uncertainty, it can be either random
(statistical) or instrumental (systematic). Statistical errors are inevitable, how-
ever their effects can be minimised by repeating the measurements and averaging
the results of a number of measurements. On the other hand, any measure-
ment is performed using some kind of instrument which has a finite sensitivity

and is subject to calibration. Imperfect calibration will give rise to systematic
uncertainties; in some cases systematic uncertainties are due to the method of
measurement (rather than the specific instrument) so it is important to choose
the method wisely.

Measurements can be characterised by their precision – how close the repeated
measurements are to each other – and accuracy – how close the measurements
are to the true value of the measured variable. These concepts are illustrated
in Figure 23: good precision means small statistical errors (small fluctuations),

Figure 23: Illustration of the quality of measurement. From left to right: low pre-
cision, low accuracy; low precision, high accuracy; high precision, low accuracy;
high precision, high accuracy.

while good accuracy means low systematic uncertainties.
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The statistical uncertainty of the measurement of some quantity X can be
estimated in the following way:

1. Measure the quantity n times and calculate the arithmetic mean x =
1
n

∑n
i=1 xi.

2. Calculate the sum of squares of the individual deviations of xi from the
mean x.

3. Calculate the dispersion D = 1
n−1

∑n
i=1(xi − x)2.

4. Find the standard deviation σ =
√
D.

5. Find the standard uncertainty for the mean:

σstat =
σ√
n
=

√

√

√

√

n
∑

i=1

(xi − x)2

n(n− 1)
(160)

6. The result of the measurement can now be written as x± σstat.

For a direct measurement, the overall uncertainty can be estimated as

∆x =
√

σ2
stat + σ2

syst, (161)

where σsyst is the instrumental – systematic – uncertainty. This could be the
absolute resolving power of the measuring instrument (say, half of the smallest
increment of the instrument scale), and/or some other uncertainty of a simi-
lar kind. Unless there are good reasons to do it differently, various sources of
systematic uncertainties are added in quadrature to form the overall systematic
error σsyst.

As for the statistical uncertainty σstat, it can be calculated as σxtα,(n−1). Here
tα,(n−1) is the quantile1 of Student’s distribution which depends on the number
of degrees of freedom n and the required confidence level α.

If possible, the measurement is repeated until the statistical uncertainty σstat

becomes as small as, or at least comparable to, the systematic error σsyst. The
final measurement result cab be presented as

x±∆x (162)

1For a random variable ζ with the cumulative distribution function F (ζ), the quantile of
order p is defined as the value ζp for which

F (ζp) ≤ p, F (ζp + o) ≥ p.

From this definition, ζ1/2 is the median of the distribution.
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in which case the interval (x − ∆x, x + ∆x) is the confidence interval of the
measurement (see equation (110)). Sometimes the statistical and systematic
errors are quoted separately:

x±∆xstat
+∆xsyst

−∆xsyst
. (163)

Since the systematic uncertainty can sometimes be asymmetric, in general the
positive and negative systematic uncertainties do not have to be equal:

|+∆xsyst| 6= | −∆xsyst|. (164)

If the measurement has several sources of systematic uncertainties, then in the
expression (163) it may be advisable to quote these separately.
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